Construction of 1,2,5-Tricarbonyl Compounds using Methyl Cyanoacetate as a Glyoxylate Anion Synthon
Reetz, H. Heimbach, K. Schwellnus, Tetrahedron Lett.
1984, 25, 511–514; b) R. J. Cregge, J. L. Herrmann, J. E.
Richman, R. F. Romanet, R. H. Schlessinger, Tetrahe-
dron Lett. 1973, 2595–2598; c) A. Flores-Parra, F.
Khuong-Huu, Tetrahedron 1986, 42, 5925–5930; d) H. J.
Bestman, A. Grob, Tetrahedron Lett. 1997, 38, 4765–
4768. During the preparation of this manuscript, Stew-
ard and Johnson reported an asymmetric synthesis of
[7] For the aerobic oxidation of a-cyano esters, see:
a) H. A. P. de Jongh, C. R. H. I. de Jonge, H. J. M. Sin-
nige, W. J. de Klein, W. G. B. Huysmans, W. J. Mijs,
W. J. van den Hoek, J. Smidt, J. Org. Chem. 1972, 37,
1960–1966; b) H. A. P. de Jongh, C. R. H. I. de Jonge,
W. J. Mijs, J. Org. Chem. 1971, 36, 3160–3168; c) M. C.
Kozlowski, E. S. DiVirgilio, K. Malolanarasimhan,
C. A. Mulrooney, Tetrahedron: Asymmetry 2005, 16,
3599–3605.
a-keto esters via CuACHTNUTRGNEUNG(NO3)2-catalyzed aerobic deacyla-
tion, which is closely related to our approach, see:
e) K. M. Steward, J. S. Johnson, Org. Lett. 2011, 13,
2426–2429. However, the oxidation of 1a in the pres-
ence of CuACHTUNGTRENNUNG(NO3)2 in CH3CN under an O2 balloon at-
mosphere showed no reaction.
[8] For the oxidation of a-amino nitriles to a-keto amides,
see: a) J. Zhu, H. Wong, Z. Zhang, Z. Yin, J. F. Kadow,
N. A. Meanwell, T. Wang, Tetrahedron Lett. 2005, 46,
3587–3589; b) Z. Yang, Z. Zhang, N. A. Meanwell, J. F.
Kadow, T. Wang, Org. Lett. 2002, 4, 1103–1105; c) K.
Takahashi, K. Shibasaki, K. Ogura, H. Iida, Chem. Lett.
1983, 859–862.
[9] For the synthesis of starting materials, see: a) M. R.
Saidi, N. Azizi, E. Akbari, F. Ebrahimi, J. Mol. Catal.
A: Chem. 2008, 292, 44–48; b) M. Meciarova, S. Toma,
Chem. Eur. J. 2007, 13, 1268–1272; c) S. H. Kim, H. S.
Lee, K. H. Kim, J. N. Kim, Tetrahedron Lett. 2009, 50,
6476–6479; d) N. Selvakumar, G. G. Rajulu, J. Org.
Chem. 2004, 69, 4429–4432; e) J. You, J. G. Verkade, J.
Org. Chem. 2003, 68, 8003–8007; f) C. Gao, X. Tao, Y.
Qian, J. Huang, Synlett 2003, 1716–1718; g) E. J. Park,
S. Lee, S. Chang, J. Org. Chem. 2010, 75, 2760–2762;
h) J. K. Augustine, Y. A. Naik, V. Vairaperumal, S. Nar-
asimhan, Tetrahedron 2009, 65, 134–138. For further
references on the synthesis of starting materials, see the
Supporting Information.
[4] For the conjugate addition of glyoxylate and glyox-
ACHTUNGTRENNUNGamide anion synthons, see: a) D. Enders, M. H. Bonten,
G. Raabe, Angew. Chem. 2007, 119, 2364–2367; Angew.
Chem. Int. Ed. 2007, 46, 2314–2316; b) Q. Liu, S. Per-
reault, T. Rovis, J. Am. Chem. Soc. 2008, 130, 14066–
14067; c) Q. Liu, T. Rovis, Org. Lett. 2009, 11, 2856–
2859; d) H. Stetter, H. Skobel, Chem. Ber. 1987, 120,
643–645.
[5] a) J. Wennerberg, M. Polla, T. Frejd, J. Org. Chem.
1997, 62, 8735–8740; b) R. D. Viirre, R. H. E. Hudson,
J. Org. Chem. 2003, 68, 1630–1632; c) T. Urushima, Y.
Yasui, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12,
2966–2969. Actually, a Stetter reaction of chalcone and
commercial ethyl glyoxylate (~50% solution in tolu-
ene) afforded only a low yield of 2a (47%) in EtOH
(reflux, 4 h) even in the presence of excess amounts of
ethyl glyoxylate (4.0 equiv.), 3-benzyl-5-(2-hydroxyeth-
yl)-4-methylthiazolium chloride (1.0 equiv.) and Et3N
(1.0 equiv.). The extent of aldehyde form in a commer-
cial sample of ethyl glyoxalate (Aldrich Chemical Com-
pany, Catalog no. 50705) was only 25–30% based on
1H NMR with the remainder its polymeric form.
[6] For the base-mediated aerobic oxidation of secondary
and benzylic nitriles, see: a) S. S. Kulp, M. J. McGee, J.
Org. Chem. 1983, 48, 4097–4098; b) K. A. Parker, J.
Kallmerten, J. Org. Chem. 1980, 45, 2614–2620; c) S. J.
Selikson, D. S. Watt, J. Org. Chem. 1975, 40, 267–268;
d) R. W. Freerksen, S. J. Selikson, R. R. Wroble, K. S.
Kyler, D. S. Watt, J. Org. Chem. 1983, 48, 4087–4096;
e) D. S. Watt, J. Org. Chem. 1974, 39, 2799–2800; f) S.
Adam, Tetrahedron 1991, 47, 7609–7614; g) S. H. Kim,
S. Lee, H. S. Lee, J. N. Kim, Tetrahedron Lett. 2010, 51,
6305–6309.
[10] R.-L. Yan, J. Luo, C.-X. Wang, C.-W. Ma, G.-S. Huang,
Y.-M. Liang, J. Org. Chem. 2010, 75, 5395–5397.
[11] For the mechanism involving a decomposition of dioxe-
tane intermediate, see: a) N. Rabjohn, C. A. Harbert, J.
Org. Chem. 1970, 35, 3240–3243; b) Y. Matsubara, T.
Matsuda, A. Kato, Y. Yamaguchi, Z.-i. Yoshida, Tetra-
hedron Lett. 2000, 41, 7901–7904; c) D. T. Breslin,
M. A. Fox, J. Am. Chem. Soc. 1993, 115, 11716–11721.
For a similar Cu-mediated deacylative oxidation, see:
d) J. Cossy, D. Belotti, V. Bellosta, D. Brocca, Tetrahe-
dron Lett. 1994, 35, 6089–6092.
[12] a) S. Zhao, Y. Ren, J. Wang, W. Yin, J. Phys. Chem. A
2009, 113, 1075–1085; b) M. A. S. Goher, F. A. Maut-
ner, J. Chem. Soc. Dalton Trans. 1999, 1923–1924; c) A.
Luna, B. Amekraz, J. P. Morizur, J. Tortajada, O. Mo,
M. Yanez, J. Phys. Chem. A 2000, 104, 3132–3141.
Adv. Synth. Catal. 2011, 353, 3335 – 3339
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3339