JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
4 Charlier, J. C.; Eklund, P. C.; Zhu, J.; Ferrari, A. C. In Carbon
Nanotubes: Advanced Topics in the Synthesis, Structure, Prop-
erties and Applications; Jorio, A.; Dresselhaus, G.; Dresselhaus,
M. S., Ed.; Berlin, Heidelberg: Springer-Verlag, 2008.
reverse positive bias to the device can extract electrons from
the graphene, and program the device back to the OFF state.
CONCLUSIONS
5 (a) Chen, Y.; El-Khouly, M. E.; Zhuang, X. D.; He, N.; Araki,
Y.; Lin, Y.; Ito, O. Chem. Eur. J. 2007, 13, 1709–1714; (b) Lin, Y.;
EI-Khouly, M. E.; Chen, Y.; Supur, M.; Gu, L.; Li, Y.; Fukuzumi,
S. Chem. Eur. J. 2009, 15, 10818–10824; (c) Zhuang, X. D.;
Chen, Y.; Li, B. X.; Ma, D. G.; Zhang, B.; Li, Y. X.; He, N. Chem.
Mater. 2010, 22, 4455–4461; (d) El-Khouly, M. E.; Chen, Y.;
Zhuang, X. D.; Fukuzumi, S. J. Am. Chem. Soc. 2009, 131,
6370–6371; (e) Zhuang, X. D.; Chen, Y.; Liu, G.; Zhang, B.;
Neoh, K.-G.; Kang, E. T.; Zhu, C. X.; Li, Y. X. Adv. Funct. Mater.
2010, 20, 2916–2922; (f) Ling, Q. D.; Kang, E. T.; Neoh, K. G.;
Chen, Y.; Zhuang, X. D.; Zhu, C.; Chan, D. S. H. Appl. Phys.
Lett. 2008, 92, 143302-1–143302-3; (g) Zhuang, X. D.; Chen, Y.;
Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Neoh, K. G.; Zhang, B.;
Zhu, J. H.; Li, Y. X. Adv. Mater. 2010, 22, 1731–1735; (h) Liu, G.;
Zhuang, X. D.; Chen, Y.; Zhang, B.; Zhu, J.; Zhu, C.; Neoh, K.
G.; Kang, E. T. Appl. Phys. Lett. 2009, 95, 253301-1–253301-3; (i)
Zhang, B.; Chen, Y.; Zhuang, X. D.; Liu, G.; Yu, B.; Kang, E. T.;
Li, Y. J. Polym. Sci. A: Polym. Chem. 2010, 48, 2642–2649.
The reaction between sarcosine, RGO, and PFTPA-CHO, led to a
p-conjugated polymer-covalently grafted RGO memory mate-
rial (RGO-PFTPA). This material exhibited good solubilities in
several common organic solvents and good thermal stability.
When compared with PFTPA-CHO, the maximal absorption
peak of RGO-PFTPA is shifted to the blue by Dk ¼ 24 nm, and
the fluorescence emission exhibited by RGO-PFTPA was appa-
rently quenched due to the CT between PFTPA as electron do-
nor and RGO as electron acceptor. The J-V curves of the ITO/
RGO-PFTPA/Al device clearly displayed nonvolatile rewritable
memory performance. Both the OFF and ON states are accessi-
ble and very stable under a constant voltage stress of ꢀ1 V for
up to 3 h, or under a pulse voltage stress of ꢀ1 V for up to 108
continuous read cycles (pulse period ¼ 2 ls, pulse width ¼ 1
ls), with a ON/OFF state current ratio of more than 103. As
this material can be processed in solution, RGO-PFTPA pro-
vides great opportunities for device fabrication at low cost
and with ease. With the excellent electrical, mechanical, and
thermal properties of graphene, this bistable switching behav-
ior makes RGO-PFTPA a promising alternative or supplement
to present silicon-based semiconductor technology.
6 Li, G. L.; Liu, L. G.; Li, M.; Wan, D.; Neoh, K. G.; Kang, E. T. J.
Phys. Chem. C. 2010, 114, 12742–12748.
7 Son, D. I.; Kim, T. W.; Shim, J. H.; Jung, J. H.; Lee, D. U.; Lee, J.
M., II; Park, W.; Choi, W. K. Nano Lett. 2010, 10, 2441–2447.
8 Kim, T. W.; Gao, Y.; Acton, O.; Yip, H. L.; Ma, H.; Chen, H.;
Jen, A. K. Y. Appl. Phys. Lett. 2010, 97, 023310-1–023310-3.
9 (a) Liu, J. Q.; Yin, Z. Y.; Cao, X. H.; Lin, A.; Xie, L.; Fan, Q.;
Boey, F.; Zhang, H.; Huang, W. ACS Nano 2010, 4, 3987–3992;
(b) Liu, J. Q.; Lin, Z. Y.; Liu, T. J.; Yin, Z. Y.; Zhou, X.; Chen, S.;
Xie, L.; Boey, F.; Zhang, H.; Huang, W. Small 2010, 6,
1536–1542.
We are grateful for the financial support of the National Natural
Science Foundation of China (21074034), the Ministry of Edu-
cation of China (309013), the Fundamental Research Funds for
the Central Universities, the State Key Laboratory of ASIC & Sys-
tem of Fudan University (11KF007), the Shanghai Municipal
Educational Commission for the Shuguang fellowship
(08GG10), and the Shanghai Eastern Scholarship.
10 (a) Li, P. P.; Chen, Y.; Zhu, J.; Feng, M.; Zhuang, X.; Lin, Y.;
Zhan, H. Chem. Eur. J. 2011, 17, 780–783; (b) Lomeda, J. R.;
Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M. J. Am.
Chem. Soc. 2008, 130, 16201–16206; (c) Bekyarova, E.; Itkis, M.
E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Had-
don, R. C. J. Am. Chem. Soc. 2009, 131, 1336–1337; (d) Shen, J.
F.; Hu, Y. H.; Li, C.; Qin, C.; Ye, M. X. Small 2009, 5, 82–85.
REFERENCES AND NOTES
1 (a) Ling, Q. D.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K.
G. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa,
H. S., Ed.; American Scientific Publishers: Stevenson Ranch, Cal-
ifornia, USA, 2007; (b) Stikeman, A. Technol. Rev. 2002, 105,
31–131; (c) Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.;
Kang, E. T.; Neoh, K. G. Prog. Polym. Sci. 2008, 33, 917–978; (d)
Ling, Q. D.; Liaw, D. J.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.;
Kang, E. T.; Neoh, K. G. Polymer 2007, 48, 5182–5201; (e) Yang,
Y.; Ouyang, J.; Ma, L.; Tseng, R. J. H.; Chu, C. W. Adv. Funct.
Mater. 2006, 16, 1001–1014; (f) Hahm, S. G.; Choi, S.; Hong, S. H.;
Lee, T. J.; Park, S.; Kim, D. M.; Kwon, W. S.; Kim, K.; Kim, O.;
Ree, M. Adv. Funct. Mater. 2008, 18, 3276–3282.
11 Segura, J. L.; Martin, N.; Guldi, D. M. Chem. Soc. Rev. 2005,
34, 31–47.
12 For example, (a) Chen, Y.; EI-Khouly, M. E.; Sasaki, M.;
Araki, Y.; Ito, O. Org. Lett. 2005, 7, 1613–1616; (b) Guldi, D. M.;
Luo, C.; Swartz, A.; Gomez, R.; Segura, J. L.; Martin, N. J. Phys.
Chem. A. 2004, 108, 455–467; (c) Kostarelos, K.; Lacerda, L.;
Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsilivay, J.; Godef-
roy, S.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.;
Bianco, A. Nat. Nanotechnol. 2007, 2, 108–113; (d) Singh, R.;
Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.;
Bianco, A.; Kostarelos, K. Proc. Natl. Acad. Sci. USA 2006, 103,
3357–3362; (e) Beckers, E. H. A.; van Hal, P. A.; Dhanabalan, A.;
Meskers, S. C. J.; Knol, J.; Hummelen, J. C.; Janssen, R. A. J.
J. Phys. Chem. A. 2003, 107, 6218–6224; (f) Martineau, C.; Blan-
chard, P.; Rondeau, D.; Delanuy, J.; Roncali, J. Adv. Mater.
2002, 14, 283–287; (g) Georgakilas, V.; Bourlinos, A.; Gournis,
D.; Tsoufis, T.; Trapalis, C.; Alonso, A. M.; Prato, M. J. Am.
Chem. Soc. 2008, 130, 8733–8740.
2 Semiconductor Industry Association, International Sematech.
International Technology Roadmap for Semiconductors (ITRS),
2005 ed.; Semiconductor Industry Association, International
Sematech: Austin, TX, 2005.
3 (a) Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Tewel-
debrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902–907;
electrons-100-times-fast-in-graphene-81534.shtml. Accessed on
March 24, 2008; (c) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima,
M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State
Commun. 2008, 146, 351–355; (d) Chen, F.; Tao, N. J. Acc.
Chem. Res. 2009, 42, 429–438.
13 (a) Chen, C. H.; Shi, J.; Tang, C. W. Macromol. Symp. 1997,
125, 1–48; (b) Fang, Q.; Yamamoto, T. Macromolecules 2004,
37, 5894–5899; (c) Lin, H. Y.; Liou, G. S.; Lee, W. Y.; Chen, W.
C. J. Polym. Sci. A: Polym. Chem. 2007, 45, 1727–1736; (d)
Park, J. H.; Cho, N. S.; Jung, Y. K.; Cho, H. J.; Shim, H. K.; Kim,
H.; Lee, Y. S. Org. Electron. 2007, 8, 272–285.
386
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 378–387