isoquinolones from N-methoxybenzamides via ruthenium-
catalyzed CÀH bond activation at room temperature.8
The MizorokiÀHeck reaction9 is one of the most im-
portant metalÀcatalyzed CÀC bond-forming processes.
As an attractive alternative, the FujiwaraÀMoritani
reaction10 is the oxidative olefination of normally unreac-
tive aryl CÀH bonds. In recent reports, palladium11 and
rhodium12 complexes are the most frequently used cat-
alysts in the FujiwaraÀMoritani reaction. However, the
analogous ruthenium-catalyzed processes13 were less
explored, except the elegant contributions from the
research groups of Milstein,14 Miura and Satoh,15 and
Yi.16 Very recently, [{RuCl2(p-cymene)}2] catalyzed CÀH
bond activation reactions of aromatic acids and aryl
ketones with olefins were reported by the research groups
ofAckermann13c and Jeganmohan,13f respectively. Herein,
we disclose our development of a ruthenium-catalyzed
oxidative CÀH bond olefination using the CONH(OMe)
group6a,17 as an oxidizing directing group. We found that
the reaction of N-methoxybenzamides with acrylates in
MeOH and styrene (or norbornadiene) in CF3CH2OH
afforded two types of products.
Our success in the ruthenium-catalyzed CÀH bond
annulations of N-methoxybenzamides with alkynes
using an oxidizing directing group8a prompted us to
examine their reactions with alkenes. Initially, the
reactions of N-methoxybenzamide (1a) with activated
alkenes were examined. To our delight, treatment of 1a
(1.0 equiv) with n-butyl acrylate (2a) (1.8 equiv) in
the presence of 5.0 mol % of [{RuCl2(p-cymene)}2]
and 30 mol % of NaOAc in CH3OH at 60 °C for 4 h
gave the Heck-type product 3aa in 87% yield with
excellent E-stereoselectivity (Scheme 1). The structure
of 3aa was confirmed by 1H and 13C NMR analysis and
mass spectrometry. No desired product was obtained in
the absence of a ruthenium catalyst or acetate. The
acetate is crucial for the cyclometalation step1b and
the regeneration of the catalyst.8a Other salts, such as
K2CO3, were unsuitable for the reaction.
With the optimized conditions in hand, we then inves-
tigated the reaction of various substituted benzamides
1 with 2a (Scheme 1). Both electron-rich and -poor
N-methoxybenzamides participated well in this reaction
and gave the corresponding alkene derivatives 3aaÀ3ma in
moderate to excellent yields. It is noteworthy that
many important functional groups on the aromatic ring
of benzamides 1, such as methoxy, fluoro, chloro, bromo,
iodo, nitro, ester, and acetyl substituents (3daÀ3la), were
compatible in the present catalytic reaction. These findings
offer the opportunity for further coupling to afford more
complicated molecules. Extension of this reaction to hetero-
aryl carboxamides turned out to be successful. N-Methoxy-
1-methyl-indolyl-2-carboxamide (1n) and N-methoxythio-
phenyl-2-carboxamide (1o) reacted withn-butylacrylate to
yield 3na and 3oa in good yield (Scheme 1). Moreover,
various acrylates, such as methyl acrylate (2b), ethyl
acrylate (2c), tert-butyl acrylate (2d), and benzyl acrylate
(2e), efficiently reacted with 1a to produce the correspond-
ing Heck-type products 3abÀ3ae in good to excellent
yield (Scheme 1). As a result of the use of an oxidizing
directing group, the reactions were completely ortho-
and mono-olefination selective in all cases. This is in
contrast to the use of an external oxidant together with
a directing group in the established metal-catalyzed
olefination methods.11,12
(8) Li, B.; Feng, H.; Xu, S.; Wang, B. Chem.;Eur. J. 2011, 17,
12573. Very recently, a ruthenium-catalyzed annulation in H2O as the
solvent was reported: (b) Ackermann, L.; Fenner, S. Org. Lett. 2011,
13, 6548.
(9) For recent reviews, see: (a) The MizorokiÀHeck Reaction; Oestreich,
€
M., Ed.; Wiley: Chichester, 2009. (b) Brase, S.; de Meijere, A. In Metal-
Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds.;
Wiley-VCH: New York, 2004; Chapter 5.
(10) For first report, see: (a) Moritani, I.; Fujiwara, Y. Tetrahedron
Lett. 1967, 8, 1119. For reviews, see: (b) Jia, C.; Kitamura, T.; Fujiwara,
Y. Acc. Chem. Res. 2001, 34, 633. (c) Beccalli, E. M.; Broggini, G.;
Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
(11) For selected examples, see: (a) Li, D.-D.; Yuan, T.-T.
Wang, G.-W. Chem. Commun. 2011, 47, 12789. (b) Li, Y.; Leow,
D.; Wang, X.; Engel, k. M.; Yu, J.-Q. Chem. Sci. 2011, 2, 967.
(c) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010,
327, 315. (d) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu,
J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (e) Lu, Y.; Wang, D.-H.;
Engle, K.-M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916. (f) Wasa,
M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680.
(g) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,
€
€
9886. (h) Wurtz, S.; Rakshit, S.; Neumann, J. J.; Droge, T.; Glorius,
F. Angew. Chem., Int. Ed. 2008, 47, 7230. (i) Cai, G.; Fu, Y.; Li, Y.;
Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666. (j) Cho, S. H.;
Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
ꢀ
(k) Garcıa-Rubia, A.; Arrayas, R. G.; Carretero, J. C. Angew.
´
Chem., Int. Ed. 2009, 48, 6511. (l) Zaitsev, V. G.; Daugulis, O.
J. Am. Chem. Soc. 2005, 127, 4156. (m) Nishikata, T.; Lipshutz,
B. H. Org. Lett. 2010, 12, 1972. (n) Zaitsev, V. G.; Daugulis, O.
J. Am. Chem. Soc. 2005, 127, 4156. (o) Grimster, N. P.; Gauntlett,
C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44,
3125. (p) Liu, C.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126,
10250. (q) Boele, M. D. K.; van Strijdonck, G. P. F; der Vries,
A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M.
J. Am. Chem. Soc. 2002, 124, 1586 and also see ref 3.
(12) For selected examples, see: (a) Feng, C.; Loh, T.-P. Chem.
Commun. 2011, 10458. (b) Tsai, A. S.; Brasse, M.; Bergman, R. G.;
Ellman, J. A. Org. Lett. 2011, 13, 540. (c) Park, S.; Kim, J. Y.; Chang, S.
Org. Lett. 2011, 13, 2372. (d) Gong, T.-J.; Xiao, B.; Liu, Z.-J.; Wan, J.;
Xu, J.; Luo, D.-F.; Fu, Y.; Liu, L. Org. Lett. 2011, 13, 3235. (e) Mochida,
S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024.
(f) Wang, F.; Song, G.; Du, Z.; Li, X. J. Org. Chem. 2011, 76, 2926. (g) Li,
X.; Gong, X.; Zhao, M.; Song, G.; Deng, J.; Li, X. Org. Lett. 2011, 13,
5808. (h) Wang, F.; Song, G.; Li, X. Org. Lett. 2010, 12, 5430.
(i) Patureau, F. W.; Besset, T.; Glorius, F. Angew. Chem., Int. Ed.
2011, 50, 1064. (j) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010,
132, 9982. (k) Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org.
Chem. 2009, 74, 7094. (l) Ueura, K.; Satoh, T.; Miura, M. Org. Lett.
2007, 9, 1407 and also see ref 7.
(13) For reviews, see: Ackermann, L.; Vicente, R. Top. Curr. Chem.
2010, 292, 211. For recent examples: (a) Flegeau, E. F.; Bruneau, C.;
Dixneuf, P. H.; Jutand, A. J. Am. Chem. Soc. 2011, 133, 10161 and
references therein. (b) Ackermann, L.; Hofmann, N.; Vicente, R. Org.
Lett. 2011, 13, 1875 and references therein. (c) Ackermann, L.; Pospech,
J. Org. Lett. 2011, 13, 4153. (d) Ackermann, L.; Lygin, A. V.; Hofmann,
N. Org. Lett. 2011, 13, 3278. (e) Ackermann, L.; Wang, L.; Lygin, A. V.
Chem. Sci. 2012, 3, 177. (f) Padala, K.; Jeganmohan, M. Org. Lett. 2011,
13, 6144. (g) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem.,
Int. Ed. 2011, 50, 6379 and also see ref 8.
(14) Weissman, H.; Song, X.; Milstein, D. J. Am. Chem. Soc. 2001,
123, 337.
(15) Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2011, 13, 706.
(16) Kwon, K.-H.; Lee, D. W.; Yi, C. S. Organometallics 2010, 29,
5748.
(17) For the pioneering use of O-methyl hydroxamic acids
[CONH(OMe)] as a directing group in CÀH activation chemistry,
see: (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc.
2008, 130, 7190. (b) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130,
14058.
Org. Lett., Vol. 14, No. 3, 2012
737