methods affording exclusively ortho-alkynylated products.
This selectivity was rationalized by a mechanism involving
a directing effect of the nitrogen functional group. As the
gold-catalyzed alkynylation did not require a directing
group, we hypothesized that para-selective functionaliza-
tion could be realized (Scheme 1). Herein, we report the
development of the first para-selective alkynylation of ani-
lines using TIPS-EBX (1) as acetylene-transfer reagent,
which proceeds under mild conditions (room temperature
to 60 °C, ambient atmosphere).
anilines would constitute an important advance, not only
in the field ofacetylene chemistrybut alsofor gold catalysis
in general, especially in light of nitrogen-containing groups
being reported to deactivate gold catalysts in several
cases.14
To investigate the alkynylation of protected anilines
with TIPS-EBX (1),15 we decided to use N,N-benzylaniline
(5a) as model compound since it is more nucleophilic than
the corresponding carbamate and the benzyl groups are
easily removed by hydrogenation. Unfortunately, the re-
action conditions previously optimized for indoles7a only
afforded a 14% yield employing N,N-dibenzylaniline (5a)
as substrate (Table 1, entry 1) due to low conversion. The
outcome of the reaction was highly dependent on the
Scheme 1. Direct Alkynylation of Anilines
i
solvent, with PrOH giving the best result (entries 2ꢀ4).
No ortho alkynylation was observedfor aniline 5a. Theuse
of 1.4 equiv of TIPS-EBX (1) was optimal (entries 4ꢀ6).
The use of a higher concentration did not improve the yield
(entry 7). Best results were obtained when the reaction was
not pushed to full conversion to prevent the formation of
Para-alkynyl anilines are widely used in material
sciences, especially as strong electron donors in pushꢀpull
chromophores for applications in optoelectronic devices
(Figure 1).8 For example, tetraalkyne 2 has shown easily
tunable photochromic properties.8f The tetraethynylene 3
(TEES) has molecular photoswitch properties.8d Further-
more, ethynylanilines are used as starting materials for the
synthesis of chromophores based on core structure 4 via
[2 þ 2]-cycloaddition with tetracyanoethene followed by
retro-electrocyclization.8e Consequently, an efficient ac-
cess to para-alkynylated anilines would lead to a more
straightforward synthesis of electronic organic materials.
(6) Reviews: (a) Dudnik, A. S.; Gevorgyan, V. Angew. Chem. Int., Ed.
2010, 49, 2096. (b) Messaoudi, S.; Brion, J. D.; Alami, M. Eur. J. Org.
Chem. 2010, 6495. Selected examples: (c) Matsuyama, N.; Hirano, K.;
Satoh, T.; Miura, M. Org. Lett. 2009, 11, 4156. (d) Kawano, T.;
Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2010, 75, 1764. (e) Kitahara, M.; Hirano, K.; Tsurugi, H.; Satoh, T.;
Miura, M. Chem.;Eur. J. 2010, 16, 1772. (f) Matsuyama, N.; Kitahara,
M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358. (g)
Besselievre, F.; Piguel, S. Angew. Chem., Int. Ed. 2009, 48, 9553. (h)
Berciano, B. P.; Lebrequier, S.; Besselievre, F.; Piguel, S. Org. Lett. 2010,
12, 4038. (i) Kim, S. H.; Chang, S. Org. Lett. 2010, 12, 1868. (j) Tobisu,
M.; Ano, Y.; Chatani, N. Org. Lett. 2009, 11, 3250. (k) Gu, Y. H.; Wang,
X. M. Tetrahedron Lett. 2009, 50, 763. (l) de Haro, T.; Nevado, C. J. Am.
Chem. Soc. 2010, 132, 1512. (m) Yang, L.; Zhao, L. A.; Li, C. J. Chem.
Commun. 2010, 46, 4184.
(7) (a) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed.
2009, 48, 9346. (b) Brand, J. P.; Waser, J. Angew. Chem., Int. Ed. 2010,
49, 7304. (c) Brand, J. P.; Chevalley, C.; Waser, J. Beilstein J. Org. Chem.
2011, 7, 565. First synthesis of TIPS-EBX (1): (d) Zhdankin, V. V.;
Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Simonsen, A. J. J. Org. Chem.
1996, 61, 6547.
(8) Selected examples: (a) Kivala, M.; Diederich, F. Acc. Chem. Res.
2009, 42, 235. (b) Gobbi, L.; Elmaci, N.; Luthi, H. P.; Diederich, F.
ChemPhysChem 2001, 2, 423. (c) Bosshard, C.; Spreiter, R.; Gunter, P.;
Tykwinski, R. R.; Schreiber, M.; Diederich, F. Adv. Mater. 1996, 8, 231.
(d) Gobbi, L.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38,
674. (e) Reutenauer, P.; Kivala, M.; Jarowski, P. D.; Boudon, C.;
Gisselbrecht, J. P.; Gross, M.; Diederich, F. Chem. Commun. 2007,
4898. (f) Marsden, J. A.; Miller, J. J.; Shirtcliff, L. D.; Haley, M. M.
J. Am. Chem. Soc. 2005, 127, 2464.
(9) (a) Li, Z. G.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am.
Chem. Soc. 2007, 129, 12058. (b) Gu, L.; Neo, B. S.; Zhang, Y. Org. Lett.
2011, 13, 1872.
(10) Shi, Z. J.; He, C. J. Am. Chem. Soc. 2004, 126, 13596.
(11) Selected examples: (a) Reetz, M. T.; Sommer, K. Eur. J. Org.
Chem. 2003, 3485. (b) Shi, Z. J.; He, C. J. Org. Chem. 2004, 69, 3669. (c)
Reich, N. W.; Yang, C. G.; Shi, Z. J.; He, C. Synlett 2006, 1278. (d) Jean,
M.; van de Weghe, P. Tetrahedron Lett. 2011, 52, 3509.
Figure 1. Para-alkynyl anilines in material sciences.
(12) Kar, A.; Mangu, N.; Kaiser, H. M.; Beller, M.; Tse, M. K. Chem.
Commun. 2008, 386.
Gold catalysis has recently been investigated for the
direct functionalization of benzene rings via amination,9
alkylation,10 hydroarylation,11 and arylation.12 Only one
example of the catalytic use of gold for the alkynylation of
benzene rings has been reported, but no anilines were used
in that work.6l,13 Moreover, there are only two single
examples of gold-catalyzed direct functionalization of
anilines for amination9b and hydroarylation.11d Conse-
quently, the extension of the alkynylation reaction to
(13) For the stoichiometric use of gold, see: Fuchita, Y.; Utsunomiya,
Y.; Yasutake, M. J. Chem. Soc., Dalton Trans. 2001, 2330.
(14) (a) Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A.
Angew. Chem., Int. Ed. 2009, 48, 8923. (b) Monge, D.; Jensen, K. L.;
Franke, P. T.; Lykke, L.; Jorgensen, K. A. Chem.;Eur. J. 2010, 16,
9478. (c) Loh, C. C. J.; Badorrek, J.; Raabe, G.; Enders, D. Chem.;Eur.
J. 2011, 17, 13409.
(15) Our work has been focused on TIPS-EBX (1) to afford easy to
deprotect silyl acetylenes. Furthermore, a bulky silyl group was shown to
be essential for the success of the reaction, see ref 7. Indeed, no product
was obtained using phenylethynyl-1,2-benziodoxol-3(1H)-one as acet-
ylene transfer reagent.
Org. Lett., Vol. 14, No. 3, 2012
745