Journal of the American Chemical Society
Article
for K+ and Cs+ complexation has been synthesized and
characterized by standard spectroscopic means as well as by
single X-ray crystal diffraction analysis. The 1H NMR
spectroscopic analyses and the X-ray crystal structural data
reveal that both in the solid states and in mixed methanol/
chloroform solution, receptor 3 forms 1:1 ion pair complexes
Foundation (KRF) (2011-0000420 to J.S.K), and the Korean
World Class University (WCU) program (Grant R32-2010-
000-10217-0) administered through the National Research
Foundation of Korea funded by the Ministry of Education,
Science and Technology (MEST). B.P.H., B.A.M., L.H.D., and
N.J.Y. acknowledge support from the Division of Chemical
Sciences, Geosciences, and Biosciences, Office of Basic Energy
Sciences, U.S. DOE.
1
with potassium and cesium salts. As evidenced by H NMR
spectroscopic analyses, receptor 3 displays a higher affinity for
the K+ cation relative to the Cs+ cation. However, in the
absence of potassium salts, receptor 3 binds cesium salts. The
addition of potassium salts containing a noncoordinating anion,
such as perchlorate, to preformed cesium ion pair complexes of
3 induces an effective release of Cs+ by the binding of K+. This
produces new ion pair complexes containing the potassium
cation. This key feature enables receptor 3 to extract CsNO3
from an aqueous phase to an organic layer consisting of
nitrobenzene. By exploiting the dual cation binding features of
receptor 3, it is thus possible to stimulate the release of the Cs+
cation without displacement. Specifically, contacting a nitro-
benzene phase containing the 3·CsNO3 complex (produced by
extraction) with an aqueous KClO4 solution serves to release
CsNO3 into the aqueous phase. Further contacting the
nitrobenzene phase containing the newly formed KClO4
complex with chloroform and water serves to strip out the
KClO4 and regenerate the free form of receptor 3 in the organic
phase. This stepwise control of the thermodynamics appears
very efficient in terms of (i) the initial complexation of the Cs+
cation and (ii) its controlled release and (iii) subsequent
regeneration of the receptor. It is important to note, however,
that the present study was carried out under idealized
laboratory conditions using solvents and concentrations
selected to facilitate analysis. Thus, direct comparisons with
existing extraction-based methods for radioactive cesium
recovery are not realistic or useful. Nevertheless, we believe
that ion pair receptors such as the one described here could
serve as a useful model for liquid−liquid separations.
Furthermore, we think the new principle of cation metathesis
described here can be applied broadly, including to other
situations where functional recognition requires the careful
control of both initial substrate binding and subsequent release.
REFERENCES
■
(1) (a) Moyer, B. A.; Birdwell, J. F., Jr.; Bonnesen, P. V.; Delmau, L.
H. Use of Macrocycles in Nuclear-Waste Cleanup: A Real-World
Application of a Calixcrown in Technology for the Separation of
Cesium. In Macrocyclic ChemistryCurrent Trends and Future; Gloe,
K., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp 383−405.
(b) Wilmarth, W. R.; Lumetta, G. J.; Johnson, M. E.; Poirier, M. R.;
Thompson, M. C.; Suggs, P. C.; Machara, N. P. Solvent Extr. Ion Exch.
2011, 29, 1−48. (c) Collins, E. D.; Del Cul, G. D.; Moyer, B. A.
Fission Product Separation/Extraction Techniques. In Advanced
Separation Techniques for Nuclear Fuel Reprocessing and Radioactive
Waste Treatment; Nash, K. L., Lumetta, G. J., Eds.; Woodhead
Publishing: Cambridge, U.K., 2011.
(2) (a) Lehn, J.-M. In Alkali Metal Complexes with Organic Ligands;
Dunitz, J. D., Ed.; Springer-Verlag: New York, 1973; Vol. 16, pp 1−69.
(b) Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives;
VCH: Weinheim, Germany, 1995.
(3) (a) Delmau, L. H.; Birdwell, J. F. Jr.; McFarlane, J.; Moyer, B. A.
Solvent Extr. Ion Exch. 2010, 28, 19−48. (b) Delmau, L. H.; Haverlock,
T. J.; Bazelaire, E.; Bonnesen, P. V.; Ditto, M. E.; Moyer, B. A. Solvent
Extr. Ion Exch. 2009, 27, 172−198.
(4) (a) Shinkai, S.; Nakaji, T.; Nishida, Y.; Ogawa, T.; Manabe, O. J.
Am. Chem. Soc. 1980, 102, 5860−5865. (b) Shinkai, S.; Nakaji, T.;
Ogawa, T.; Shigematsu, K.; Manabe, O. J. Am. Chem. Soc. 1981, 103,
111−115. (c) Asano, T.; Okada, T.; Shinkai, S.; Shigematsu, K.;
Kusano, Y.; Manabe, O. J. Am. Chem. Soc. 1981, 103, 5161−5165.
(d) Shinkai, S.; Ogawa, T.; Kusano, Y.; Manabe, O.; Kikukawa, K.;
Goto, T.; Matsuda, T. J. Am. Chem. Soc. 1982, 104, 1960−1967.
(e) Shinkai, S.; Minami, T.; Kusano, Y.; Manabe, O. J. Am. Chem. Soc.
1982, 104, 1967−1972. (f) Shinkai, S.; Kinda, H.; Manabe, O. J. Am.
Chem. Soc. 1982, 104, 2933−2934. (g) Shinkai, S.; Minami, T.;
Kusano, Y.; Manabe, O. J. Am. Chem. Soc. 1983, 105, 1851−1856.
(5) (a) Webber, P. R. A.; Beer, P. D.; Chen, G. Z.; Felix, V.; Drew, M.
G. B. J. Am. Chem. Soc. 2003, 125, 5774−5785. (b) Lyskawa, J.; Le
Derf, F.; Levillain, E.; Mazari, M.; Salle,
Bureau, C.; Palacin, S. J. Am. Chem. Soc. 2004, 126, 12194−112195.
(c) Caballero, A.; Lloveras, V.; Tarraga, A.; Espinosa, A.; Velasco, M.
́
M.; Dubois, L.; Viel, P.;
ASSOCIATED CONTENT
■
́
S
* Supporting Information
D.; Vidal-Gancedo, J.; Rovira, C.; Wurst, K.; Molina, P.; Veciana, J.
Angew. Chem., Int. Ed. 2005, 44, 1977−1981.
Synthetic details, NMR spectroscopic data, ITC analyses,
equilibrium analysis of liquid-liquid extraction data, and X-ray
structural data (CIF) for 3·CH3CN (CCDC 826576),
(6) (a) Nielsen, K. A.; Cho, W.-S.; Jeppesen, J. O.; Lynch, V. M.;
Becher, J.; Sessler, J. L. J. Am. Chem. Soc. 2004, 126, 16296−16297.
3·KNO3·(C5H12)1/2·CH3Cl·H2O (CCDC 826575),
́ ́
(b) Nielsen, K. A.; Sarova, G. H.; Martín-Gomis, L.; Fernandez-Lazaro,
3·CsCl·CHCl3·(CH3CH2OH)1/2·(H2O)11/2 (CCDC 826574),
and 3·CsNO3·C2H5OH·C6H14 (CCDC 826577). This material
F.; Stein, P. C.; Sanguit, L.; Levillain, E.; Sessler, J. L.; Guldi, D. M.;
Sastre-Santos, A.; Jeppesen, J. O. J. Am. Chem. Soc. 2008, 130, 460−
462. (c) Park, J. S.; Karnas, E.; Ohkubo, K.; Chen, P.; Kadish, K. M.;
Fukuzumi, S.; Bielawski, C. W.; Hudnall, R. W.; Lynch, V. M.; Sessler,
J. L. Science 2010, 329, 1324−1326. (d) Fukuzumi, S.; Ohkubo, K.;
Kawashima, Y.; Kim., D. S.; Park, J. S.; Jana, A.; Lynch, V. M.; Kim, D.;
Sessler, J. L. J. Am. Chem. Soc. 2011, 133, 15938−15941.
AUTHOR INFORMATION
■
Corresponding Author
(7) (a) Smith, B. D. In Ion-Pair Recognition by Ditopic Receptors,
Macrocyclic Chemistry: Current Trends and Future Prospectives; Gloe, K.,
Antonioli, B., Eds.; Kluwer: London, 2005; pp 137−152. (b) Kirkovits,
G. J.; Shriver, J. A.; Gale, P. A.; Sessler, J. L. J. Inclusion Phenom.
Macrocyclic Chem. 2001, 41, 69−75.
(8) Kim, S. K.; Sessler, J. L. Chem. Soc. Rev. 2010, 39, 3784−3809 and
references cited therein.
(9) (a) Pfeifer, J. R.; Reiβ, P.; Koert, U. Angew. Chem., Int. Ed. 2006,
45, 501−504. (b) Sisson, A. L.; Shah, M. R.; Bhosale, S.; Matile, S.
Chem. Soc. Rev. 2006, 35, 1269−1286. (c) Nakamura, T.; Akutagawa,
ACKNOWLEDGMENTS
■
This work was supported by the Office of Basic Energy
Sciences, U.S. Department of Energy (DOE) (Grant DE-FG02-
01ER15186 to J.L.S.), a Korea National Research Foundation
(NRF) grant (MEST 2009-0087013 to C.-H.L.), the Creative
Research Initiatives (CRI) project of the Korea Research
1791
dx.doi.org/10.1021/ja209706x | J. Am. Chem.Soc. 2012, 134, 1782−1792