694
L. Alcaraz et al. / Bioorg. Med. Chem. Lett. 22 (2012) 689–695
O
OH
O
H
N
O
N
H
a
b, c
OH
N
53
HO
NH2
S
O
O
N
H
.2 CH2(COOH)2
54
O
.AcOH
31
HO
S
N
H
55
O
Scheme 2. Reagents and conditions: (a) Dess–Martin, DCM, rt; (b) 1 equiv HCl, NaCNBH3, MeOH, rt (50%); (c) (i) TFA, rt (ii) 2 equiv malonic acid, MeCN/EtOH, stirred at rt for
5 days (94%).
in vivo using intratracheal (i.t.) administration in a well established
histamine-induced bronchonstriction guinea pig model.17,18 The
duration of action of 31 and reference compounds (formoterol,
salmeterol and indacaterol) were measured in the guinea pig by
related receptors and to have a duration of action, in a bronchocon-
striction guinea pig model, that is superior to that of both formo-
terol and salmeterol, and similar to that of indacaterol. Based on
the promising profile, compound 31 was progressed into develop-
ment for further studies as the bis-malonate salt.
the i.t. route ( Fig. 2).19 Compound 31, when dosed at 7
lg/kg
(ED80, free base equivalent), retained 64% bronchoprotection at
24 h post dose. This bronchoprotection was significantly different
to that of control animals, clearly longer than the duration of action
of both formoterol and salmeterol, and was similar to that of ind-
acaterol. The good selectivity observed in the binding assays (Table
3) was confirmed in relevant functional assays (b1 pEC50 7.2 IA 0.9
Supplementary data
Supplementary data associated with this article can be found, in
(CHO cells, cAMP),
pEC50 6.6 IA 0.4 (HEK cells, GTP
a
1D pEC50 6.9 IA 0.3 (HEK cells, Calcium flux), D2
References and notes
cS)), further profiling through a pa-
1. (a) Waldeck, B. Eur. J. Pharmacol. 2002, 445, 1; (b) Siafakas, N. M.; Vermeire, P.;
Price, N. B. Eur. Respir. J. 1995, 8, 1398.
2. (a) Calverley, P. M.; Pauwels, R.; Vestbo, J.; Jones, P.; Pride, N.; Gulsvik, A.;
Anderson, J.; Maden, C. Lancet 2003, 361, 449; (b) Szafranski, W.; Cukier, A.;
Ramirez, A.; Menga, G.; Sansores, R.; Nahabedian, S.; Peterson, S.; Olsson, H.
Eur. Resp. J. 2003, 21, 74.
3. MacNee, W.; ZuWallack, R.; Keenan, J. In Clinical Management of Chronic
Obstructive Pulmonary Disease, 2nd ed.; Professional Communications: New
York, 2007.
4. Cazzola, M.; Segreti, A.; Matera, M. G. Curr. Opin. Pulm. Med. 2010, 16, 6.
5. (a) Dahl, R.; Greefhorst, L. A.; Nowak, D.; Nonikov, V.; Byrne, A. M.; Thomson, M.
H.; Till, D.; Della Cioppa, G. Am. J. Respir. Crit. Care Med. 2001, 164, 778; (b)
Matthys, H. Respiration 2001, 68, 432; (c) Rennard, S. I.; Anderson, W.;
ZuWallack, R.; Broughton, J.; Bailey, W.; Friedman, M.; Wisniewski, M.; Rickard,
K. Am. J. Respir. Crit. Care Med. 2001, 163, 1087; (d) Mahler, D. A.; Donohue, J. F.;
Barbee, R. A.; Goldman, M.; Gross, N. J.; Wisniewski, M. E.; Yancey, S. W.; Zakes,
B. A.; Rickard, K. A.; Anderson, W. H. Chest 1999, 115, 957; (e) Matera, M. G.;
Cazzola, M.; Vinciguerra, A.; Di Perna, F.; Calderaro, F.; Caputi, M.; Rossi, F.
Pulm. Pharmacol. 1995, 8, 267.
nel of more than 140 assays did not reveal any activities inferior to
100 nM, and activities at hERG (patch clamp) and cytochrome
P450s (5 isoforms, binding) were all inferior to 10 lM.
Since the hydrochloride salt of 31 did not possess optimal prop-
erties, extensive work was carried out in order to identify alterna-
tive crystalline salts. From these studies, the di-malonate salt
emerged as having good solid state properties and was selected
for further progression.20
Compounds 2–50 have been synthesised using similar proce-
dures to that employed for the preparation of compound 31. The
side chain was prepared in five steps from the commercially avail-
able 3-methylphenyl acetic acid 5 as outlined in Scheme 1. Bro-
mination of 51 with N-bromo succinimide was followed by
reduction of the acid to the corresponding alcohol. The resulting
benzyl bromide was then converted into the benzaldehyde 52
using the Hass–Bender procedure.21 Finally, reduction of the imine
formed from aldehyde 52 and 2-methoxybenzylamine followed by
BOC protection yielded 53.
Intermediate 53 was converted through to 31 as shown in
Scheme 2. Dess–Martin oxidation in dichloromethane was found
to give a smooth conversion to aldehyde 54 that was used imme-
diately after work up in the next step. It is worth noting that oxi-
dation with other reagents such as PCC also gave a good yields of
aldehyde 54 however, an inseparable side product resulting from
oxidative cleavage of the enol form of the resulting phenacetalde-
hyde giving benzaldehyde22 proved problematic. The coupling
through reductive amination of aldehyde 54 and amine 5512 was
carried out using sodium cyanoborohydride in methanol followed
by removal of the BOC protecting group using a 50% solution of tri-
fluoroacetic acid in dichloromethane for 20 min at room tempera-
ture to avoid racemisation of the hydroxyl group. The ‘free base’ of
31 was precipitated from an aqueous solution by treatment with
aqueous ammonia and compound 31 crystallised as its bis-malon-
ate salt which was found to be the most suitable for pharmaceuti-
cal development and was selected for progression.
6. For recent reviews see: (a) Hansel, T. T.; Barnes, P. J. Prog. Resp. Res. 2010, 39, 3;
(b) Glossop, P. A.; Price, D. A. Annu. Rep. Med. Chem. 2006, 41, 237.
7. For a recent review see: Moulton, B. C.; Fryer, A. D. Br. J. Pharmacol. 2011, 163,
44.
8. Cazzola, M.; Calzetta, L.; Matera, M. G. Br. J. Pharmacol. 2011, 163, 4.
9. (a) Hui, C. K.; Chung, K. F. Exp. Rev. Respir. Med. 2011, 5, 9; (b) Dahl, R.; Chung, K.
F.; Buhl, R.; Magnussen, H.; Nonikov, V.; Jack, D.; Bleasdale, P.; Owen, R.;
Higgins, M.; Kramer, B. Thorax 2010, 65, 473; (c) Donohue, J. F.; Fogarty, C.;
Lötvall, J.; Mahler, D. A.; Worth, H.; Yorgancioglu, A.; Iqbal, A.; Swales, J.; Owen,
R.; Higgins, M.; Kramer, B. Am. J. Respir. Crit. Care Med. 2010, 182, 155–162; (d)
Baur, F.; Beattie, D.; Beer, D.; Bentley, D.; Bradley, M.; Bruce, I.; Charlton, S. J.;
Cuenoud, B.; Ernst, R.; Fairhurst, R. A.; Faller, B.; Farr, D.; Keller, T.; Fozard, J. R.;
Fullerton, J.; Garman, S.; Hatto, J.; Hayden, C.; He, H.; Howes, C.; Janus, D.; Jiang,
Z.; Lewis, C.; Loeuillet-Ritzler, F.; Moser, H.; Reilly, J.; Steward, A.; Sykes, D.;
Tedaldi, L.; Trifilieff, A.; Tweed, M.; Watson, S.; Wissler, E.; Wyss, D. J. Med.
Chem. 2010, 53, 3675.
10. For some recent examples see: (a) Pérez, D.; Crespo, M.; Solé, L.; Prat, M.;
Carcasona, C.; Calama, E.; Otal, R.; Gavaldá, A.; Gómez-Angelats, M.; Miralpeix,
M.; Puig, C. Bioorg. Med. Chem. Lett. 2011, 21, 1545; (b) Beattie, D.; Bradley, M.;
Brearley, A.; Charlton, S. J.; Cuenoud, B. M.; Fairhurst, R. A.; Gedeck, P.; Gosling,
M.; Janus, D.; Jones, D.; Lewis, C.; McCarthy, C.; Oakman, H.; Stringer, R.; Taylor,
R. J.; Tuffnell, A. Bioorg. Med. Chem. Lett. 2010, 20, 5302; (c) Glossop, P. A.; Lane,
C. A.; Price, D. A.; Bunnage, M. E.; Lewthwaite, R. A.; James, K.; Brown, A. D.;
Yeadon, M.; Perros-Huguet, C.; Trevethick, M. A.; Clarke, N. P.; Webster, R.;
Jones, R. M.; Burrows, J. L.; Feeder, N.; Taylor, S. C.; Spence, F. J. J. Med. Chem.
2010, 53, 6640; (d) Bouyssou, T.; Hoenke, C.; Christoph, R.; Klaus; Lustenberger,
P.; Pestel, S.; Sieger, P.; Lotz, R.; Heine, C.; Buettner, F. H.; Schnapp, A.; Konetzki,
I. Bioorg. Med. Chem. Lett. 2010, 20, 1410; (e) Hoenke, C.; Bouyssou, T.;
Tautermann, C. S.; Rudolf, K.; Schnapp, A.; Konetzki, I. Bioorg. Med. Chem. Lett.
2009, 19, 6640; (f) Bouyssou, T.; Rudolf, K.; Hoenke, C.; Lustenberger, P.;
Schnapp, A.; Konetzki, I. Bioorg. Med. Chem. Lett. 2009, 19, 5237; (g) Procopiou,
P. A.; Barrett, V. J.; Bevan, N. J.; Biggadike, K.; Butchers, P. R.; Coe, D. M.; Conroy,
The discovery and development of a new series of potent and
efficacious dibasic b2-agonists have been described. This work led
to the identification of the 31 which was shown to be potent and
efficacious at the b2-receptor, to have good selectivity over closely