Journal of the American Chemical Society
Article
Soc. 2004, 126, 6842−6843. (j) Zhu, C.; Shen, X.; Nelson, S. G.
J. Am. Chem. Soc. 2004, 126, 5352−5253. (k) Calter, M. A.; Tretyak,
O. A.; Flaschenriem, C. Org. Lett. 2005, 7, 1809−1812. (l) Oh, S.;
Cortez, G. S.; Romo, D. J. Org. Chem. 2005, 70, 2835−2838.
(m) Henry-Riyad, H.; Lee, C.; Purohit, V. C.; Romo, D. Org. Lett.
2006, 8, 4363−4366. (n) Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8,
1717−1719. (o) Cho, S. W.; Romo, D. Org. Lett. 2007, 9, 1537−
1540. (p) Ma, G.; Nguyen, H.; Romo, D. Org. Lett. 2007, 9, 2143−
2146. (q) Kull, T.; Peters, R. Angew. Chem., Int. Ed. 2008, 47, 5461−
5464. (r) He, L.; Lv, H.; Zhang, Y. R.; Ye, S. J. Org. Chem. 2008, 73,
8101−8103. (s) Wang, X.-N.; Shao, P.-L.; Lv, H.; Ye, S. Org. Lett.
2009, 11, 4029−4031. (t) Chidara, S.; Lin, Y.-M. Synlett 2009, 1675−
1679. (u) Mondal, M.; Ibrahim, A. A.; Wheeler, K. A.; Kerrigan, N. J.
Org. Lett. 2010, 12, 1664−1667. (v) Kull, T.; Cabrera, J.; Peters, R.
Chem.Eur. J. 2010, 16, 9132−9139. (w) Aronica, L. A.; Mazzoni,
C.; Caporusso, A. M. Tetrahedron 2010, 66, 265−273. (x) Morris, K.
A.; Arendt, K.; Oh, S.; Romo, D. Org. Lett. 2010, 12, 3764−3767.
(y) Leverett, C. A.; Purohit, V. C.; Romo, D. Angew. Chem., Int. Ed.
2010, 49, 9479−9483.
2010, 132, 12871−12873. (i) Saadi, J.; Akakura, M.; Yamamoto, H.
J. Am. Chem. Soc. 2011, 133, 14248−14251.
(18) (a) Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957,
79, 1920−1923. (b) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem.
Eur. J. 2002, 8, 36−44. (c) Geary, L. M.; Hultin, P. G. Tetrahedron:
Asymmetry 2009, 20, 131−173.
(19) Computational details can be found in the Supporting
Information.
(20) Some of the experimental studies described herein were
described previously: Zhao, C. Ph. D. Thesis, Texas A&M University,
2001.
(21) (a) Allinger, N. L.; Zalkow, V. J. Am. Chem. Soc. 1960, 25, 701−
704. (b) Parrill, A. L.; Dalata, D. P. Tetrahedron Lett. 1994, 35, 7319−
7322. (c) For a review, see: Jung, M. E. Synlett 1999, 843−846.
(22) (a) Danheiser, R. L.; Nowick, J. S.; Lee, J. H.; Miller, R. F.;
Huboux, A. H. Org. Synth. 1996, 73, 61−72. (b) Wedler, C.; Schick, H.
Org. Synth. 1998, 75, 116−123. (c) Wedler, C.; Ludwig, R.; Schick, H.
Pure Appl. Chem. 1997, 69, 605−608.
(23) (a) Mitchell, T. A.; Zhao, C.; Romo, D. Angew. Chem., Int. Ed.
2008, 47, 5026−5029. For related stepwise processes, see: (b) Mead, K. T.;
Pillai, S. K. Tetrahedron Lett. 1993, 34, 6997−7000. (c) Mitchell, T. A.;
Romo, D. J. Org. Chem. 2007, 72, 9053−9059.
(24) Mitchell, T. A.; Zhao, C.; Romo, D. J. Org. Chem. 2008, 73,
9544−9551.
(25) 2-Mercaptopyridine has served as an invaluable scaffold for
many reactions. For a review, see: Schmidt, B.; Kuhn, C. J. Prakt.
Chem. 1999, 341, 114−120.
(26) More thiophilic Lewis acids, such as HgCl2, CdCl2, and CuCl2,
were also studied for their ability to promote a TMAL reaction with
thiopyridyl ketene acetals. HgCl2 and CuCl2 only led to desilylation of
the ketene acetal to the corresponding thiopyridyl ester along with
recovered aldehyde and CdCl2 gave no reaction. In light of these
failures, we reason that the accessible geometries of the metal
complexes must also play an important role for a successful TMAL
reaction. For a discussion of the affinity of transition metals toward
sulfur ligands, see: Kuehn, C. G.; Isied, S. S. Prog. Inorg. Chem. 1980,
27, 153−218.
(27) For a recent review of dyotropic rearrangements including that
of β-lactones, see: Fernandez, I.; Cossio, F. P.; Sierra, M. A. Chem. Rev.
2009, 109, 6687−6711.
(28) We considered that a zinc enolate could be formed in the
TMAL by transmetalation of the thiopyridyl ketene acetal, but
independent generation of the zinc enolate of thiopyridyl propionate
gave only aldol products with no detectable β-lactone products, see:
Abdel-Magid, A.; Pridgen, L. N.; Eggleston, D. S.; Lantos, I. J. Am.
Chem. Soc. 1986, 108, 4595−4602.
(29) A significant temperature dependence was observed for the
ZnCl2-mediated TMAL process since no reaction occurred below
23 °C.
(30) The diminished yield in this example is presumably due to facile
decarboxylation to deliver the alkene and corresponds to the yield
observed by Hirai (see ref 6).
(31) (a) Suh, K.-H.; Choo, D.-J. Tetrahedron Lett. 1995, 36, 6109−
6112. (b) Suh, K.-H.; Choo, D.-J. Bull. Kor. Chem. Soc. 1996, 17, 674−
676.
(2) (a) Tidwell, T. T. Angew. Chem., Int. Ed. 2005, 44, 5778−5785.
(b) Tidwell, T. T. Eur. J. Org. Chem. 2006, 563−576.
(3) Purohit, V. C.; Matla, A. S.; Romo, D. Heterocycles 2008, 76,
949−979.
(4) Staudinger, H.; Bereza, S. Ann. 1911, 380, 243−277.
(5) Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104, 166−
168.
(6) Hirai, K.; Homma, H.; Mikoshiba, I. Heterocycles 1994, 38, 281−
282.
(7) Wang, Y.; Zhao, C.; Romo, D. Org. Lett. 1999, 1, 1197−1999.
(8) (a) Yang, H. W.; Romo, D. J. Org. Chem. 1997, 62, 4−5.
(b) Yang, H. W.; Zhao, C.; Romo, D. Tetrahedron 1997, 53, 16471−
16488.
(9) (a) Yang, H. W.; Romo, D. J. Org. Chem. 1998, 63, 1344−1347.
(b) Romo, D.; Harrison, P. H. M.; Jenkins, S. I.; Riddoch, R. W.;
Park, K.; Yang, H. W.; Zhao, C.; Wright, G. D. Bioorg. Med. Chem. 1998,
6, 1255−1272.
(10) (a) Dollinger, L. M.; Howell, A. R. J. Org. Chem. 1998, 63,
6782−6783. (b) Yin, J.; Yang, X. B.; Chen, Z. X.; Zhang, Y. H. Chin.
Chem. Lett. 2005, 16, 1448−1450. (c) Fora less successful use of the
TMAL process, see: Trost, B. M.; Papillon, J. P. N; Nussbaumer, T.
J. Am. Chem. Soc. 2005, 127, 17921−17937.
(11) (a) Ma, G.; Zancanella, M.; Oyola, Y.; Richardson, R. D.; Smith,
J. W.; Romo, D. Org. Lett. 2006, 8, 4497−4500. (b) Zhang, W.;
Richardson, R. D.; Chamni, S.; Smith, J. W.; Romo, D. Bioorg. Med.
Chem. Lett. 2008, 28, 2491−2494. (c) Richardson, R. D.; Ma, G.;
Oyola, Y.; Zancanella, M. A.; Knowles, L. M.; Cieplak, P.; Romo, D.;
Smith, J. W. J. Med. Chem. 2008, 51, 5285−5296.
(12) Schmitz, W. D.; Messerschmidt, N. B.; Romo, D. J. Org. Chem.
1998, 63, 2058−2059.
(13) Wang, Y.; Romo, D. Org. Lett. 2002, 4, 3231−3234.
(14) Cho, S. W.; Romo, D. Org. Lett. 2007, 9, 1537−1540.
(15) Yang, P.-Y.; Liu, K.; Ngai, M. H.; Lear, M. J.; Wenk, M. R.; Yao,
S. Q. J. Am. Chem. Soc. 2010, 132, 656−666.
(16) (a) Kridel, S. J.; Axelrod, F.; Rozenkrantz, N.; Smith, J. W.
Cancer Res. 2004, 64, 2070. (b) Knowles, L. M.; Axelrod, F.; Browne,
C. D.; Smith, J. W. J. Biol. Chem. 2004, 279, 30540. (c) Purohit, V. C.;
Richardson, R. D.; Smith, J. W.; Romo, D. J. Org. Chem. 2006, 71,
4549−4558.
(17) (a) Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973,
1011−1014. (b) Mukaiyama, T.; Banno, T.; Narasaka, K. J. Am. Chem.
Soc. 1974, 96, 7503−7509. (c) Heathcock, C. H. Science 1981, 214,
395−400. (d) Mukaiyama, T. Aldrichimica Acta 1996, 29, 59−76. For
selected recent papers describing the continued utility of the
Mukaiyama aldol reaction, see: (e) Bolla, M. L.; Patterson, B.;
Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 16044−16045.
(f) Cheon, C. H.; Yamamoto, H. Org. Lett. 2010, 12, 2476−2479.
(g) Alam, J.; Keller, T. H.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132,
9546−9548. (h) Mei, Y.; Dissanayake, P.; Allen, M. J. J. Am. Chem. Soc.
(32) (a) Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L. J. Chem.
Soc., Dalton Trans. 1972, 32, 2515−2517. (b) Ashworth, C. C.; Bailey,
N. A.; Johnson, M.; McCleverty, H. A.; Morrison, N.; Tabbiner, B.
J. Chem. Soc., Chem. Commun. 1976, 743−744. (c) Becker, B.;
Radacki, K.; Wojnowski, W. J. Organomet. Chem. 1996, 521, 39−49.
(d) Fraser, K. A.; Harding, M. M. Acta Crystallogr. 1967, 22, 75−80.
(33) The TBS ketene acetal (E)-2a was utilized in NMR studies due
to facile desilylation of the corresponding TES ketene acetal (E)-2b,
which complicated spectral interpretation.
(34) While it is well known that sp3 silyl ether oxygens are
significantly less Lewis basic than the corresponding sp3 alkyl ether
oxygens, far less information is available for sp2 silyl ether oxygen
atoms. Regarding the former, see: (a) Shambayati, S.; Blake, J. F.;
Wierschke, S. G.; Jorgensen, W. L.; Schreiber, S. L. J. Am. Chem. Soc.
3093
dx.doi.org/10.1021/ja209163w | J. Am. Chem.Soc. 2012, 134, 3084−3094