J. Li et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4293–4295
4295
Table 1
corresponding target molecules. Compound 15: Yield: 16.9%; mp: 100ꢁ102 °C;
½ ꢂ
a 2D0 +322.4 (c, 0.55, CHCl3); HR-ESI-MS: m/z 590.2011 [M+H]+ (calcd 590.2021);
Inhibitory activity of selected analogs against A549, DU145, KB and KBvin tumor cell
lines
1H NMR (300 MHz, CDCl3): d 8.31 (d, 2H, J = 8.4 Hz, –ArH), 8.08 (d, 2H, J = 8.4 Hz,
–ArH), 7.68 (d, 1H, J = 15.6 Hz, 9-H), 7.10 (d, 1H, J = 15.6 Hz, 10-H), 7.07 (s, 1H, 7-
H), 6.85 (s, 1H, 6-H), 6.62 (s, 1H, 3-H), 6.59 (s, 2H, 20, 60-H), 4.57 (d, 1H, J = 6.9 Hz,
70-H), 3.73ꢁ3.93 (16H, 5ꢃOCH3, 80-H), 3.50 (s, 3H, –COOCH3). Compound 16:
Compound
IC50
(
l
g/mL)
A549
DU145
KB
KBvin
Yield: 55.1%; mp: 107ꢁ109 °C; ½a D20
ꢂ
+265.2 (c, 0.7, CHCl3); HR-ESI-MS: m/z
627.2928 [M+H]+ (calcd 627.2952); 1H NMR (300 MHz, CDCl3): d 7.90 (d, 2H,
J = 8.1 Hz, ꢁArH), 7.62 (d, 1H, J = 15.6 Hz, 9-H), 7.29 (d, 2H, J = 8.1 Hz, ꢁArH),
7.17 (d, 1H, J = 15.3 Hz, 10-H), 6.99 (s, 1H, 7-H), 6.83 (s, 1H, 6-H), 6.60 (s, 3H, 20,
60-H, 3-H), 4.56 (d, 1H, J = 7.5 Hz, 70-H), 3.72ꢁ3.93 (16H, 5ꢃOCH3, 80-H), 3.49 (s,
3H, –COOCH3), 2.56 (m, 1H, –CH–), 1.26ꢁ1.86 (m, 10H, –(CH2)5–). Compound 17:
15
18
21
16.8 1.32
6.79 0.76
12.0 0.92
24.6 2.02
0.113 0.014
20.3 0.61
5.84 0.91
12.8 2.15
15.46 1.19
16.0 1.66
23.0 0.35
5.17 0.96
12.29 2.36
16.9 0.71
2.10 0.378
5.90 1.13
12.28 1.84
16.6 3.87
0.819 0.162
22
GL-331*
0.800 0.056
Yield: 9.2%; mp: 95ꢁ97 oC; ½a D20
ꢂ
+260 (c, 0.5, CHCl3); HR-ESI-MS: m/z 601.2780
7.91 (d, 2H,
[M+H]+ (calcd 601.2796); 1H NMR (300 MHz, acetone-d6):
d
*
GL-331 is a podophyllotoxin analog that previously reached clinical trials.1
J = 8.1 Hz, –ArH), 7.60 (d, 1H, J = 15.3 Hz, 9-H), 7.33 (d, 2H, J = 8.1 Hz, –ArH), 7.24
(d, 1H, J = 15.3 Hz, 10-H), 7.16 (s, 1H, 7-H), 7.02 (s, 1H, 6-H), 6.76 (s, 2H, 20, 60-H),
6.67 (s, 1H, 3-H), 4.56 (d, 1H, J = 7.1 Hz, 70-H), 3.99 (d, 1H, J = 7.1 Hz, 80-H),
3.66ꢁ3.85 (15H, 5ꢃOCH3), 3.32 (s, 3H, –COOCH3), 2.56 (d, 1H, J = 7.1 Hz, –CH–),
1.91 (m, 1H, –CH–), 0.99 (s, 3H, CH3), 0.96 (s, 3H, CH3). Compound 18: Yield:
compounds (15, 18, 21, and 22) demonstrated noticeable inhibi-
tory activity against A549, DU145, KB and KBvin tumor cells, and
the most active compound 18 exhibited IC50 values less than
41.7%; mp: 126ꢁ129 °C; ½a D20
ꢂ
+260.9 (c, 0.7, CHCl3); HR-ESI-MS: m/z 561.2132
[M+H]+ (calcd. 561.2119); 1H NMR (300 MHz, CDCl3): d 7.93 (d, 2H, J = 8.4 Hz, –
ArH), 7.62 (d, 1H, J = 15.3 Hz, 9-H), 7.16 (d, 1H, J = 15.6 Hz, 10-H), 6.99 (s, 1H, 7-
H), 6.88 (d, 2H, J = 9.0 Hz, –ArH), 6.83 (s, 1H, 6-H), 6.60 (s, 3H, 20, 60-H, 3-H), 4.56
(d, J=7.2 Hz, 1H, 70-H), 3.87 (s, 1H, 80-H), 3.72ꢁ3.92 (15H, 5ꢃOCH3), 3.49 (s, 3H, -
10
lg/mL (Table 1).
In summary, a series of novel podophyllotoxin analogs featuring
COOCH3). Compound 19: Yield: 13.7%; mp: 124ꢁ126 °C; ½a D20
ꢂ
+311.1 (c, 0.3,
4,5-dimethoxy substitution and an opened D ring were synthe-
sized and evaluated for cytotoxic activity. In contrast to previous
SAR deduced from Topo II inhibition, which requires intact A and
D rings for retention of activity, analogs with modified A and D
rings, such as 18, exhibited evident in vitro anticancer activity.
CHCl3); HR-ESI-MS: m/z 621.2471 [M+H]+ (calcd 621.2483); 1H NMR (300 MHz,
CDCl3): d 8.05 (d, 2H, J = 8.4 Hz, –ArH), 7.45ꢁ7.69 (m, 5H, –ArH), 7.63 (d, 2H,
J = 8.7 Hz, –ArH), 7.47 (d, 1H, J = 14.4 Hz, 9-H), 7.22 (d, 1H, J = 15.0 Hz, 10-H),
7.03 (s, 1H, 7-H), 6.85 (s, 1H, 6-H), 6.61 (s, 3H, 20, 60-H, 3-H), 4.57 (d, 1H,
J = 6.9 Hz, 70-H), 3.73ꢁ3.93 (16H, 5ꢃOCH3, 80-H), 3.51 (s, 3H, -COOCH3).
20
Compound 20: Yield: 10.4%; mp: 110ꢁ113 °C ; [
a
]
D
-244.4 (c, 0.6, CHCl3);
HR-ESI-MS: m/z 628.2564 [M+H]+ (calcd. 649.2541); 1H NMR (300 MHz, CDCl3):
d 7.55 (d, 1H, J = 15.6 Hz, 9-H), 7.43 (dd, 1H, J = 8.4; 1.5 Hz, –ArH), 7.36 (d, 1H,
J = 1.5 Hz, –ArH), 7.08 (s, 1H, 7-H), 6.82 (d, 1H, J = 9.0 Hz, –ArH), 6.81 (s, 1H, 6-H),
6.74 (d, 1H, J = 15.6 Hz, 10-H), 6.55 (s, 1H, 3-H), 6.46 (s, 2H, 20, 60-H), 6.04 (s, 2H,
-OCH2O-), 4.34 (d, 1H, J = 6.3 Hz, 70-H), 3.96 (d, 1H, J = 6.3 Hz, 80-H), 3.78ꢁ3.91
(15H, 5ꢃOCH3), 3.32ꢁ3.56 (m, 4H, –N(CH2)2–); 1.87ꢁ2.04 (m, 4H, –(CH2)2–).
Acknowledgments
This investigation was supported by the National S&T Major
Project (No. 2009ZX09301-003) and also in part by the Taiwan
Department of Health, China Medical University Hospital Cancer
Research Center of Excellence (DOH100-TD-C-111-005).
Compound 21: Yield: 10.0%; mp: 113ꢁ115 °C; ½a D20
ꢁ488.9 (c, 0.3, CHCl3); HR-
ꢂ
ESI-MS: m/z 666.3406 [M+H]+ (calcd 666.3425); 1H NMR (300 MHz, CDCl3): d
7.77 (d, 2H, J = 8.4 Hz, –ArH), 7.56 (d, 1H, J = 15.9 Hz, 9-H), 7.27 (d, 2H, J = 8.1 Hz,
–ArH), 7.08 (s, 1H, 7-H), 6.81 (s, 1H, 6-H), 6.78 (d, 1H, J = 16.2 Hz, 10-H), 6.56 (s,
1H, 3-H), 6.46 (s, 2H, 20, 60-H), 4.33 (d, 1H, J = 6.0 Hz, 70-H), 3.97 (d, 1H, J = 6.0 Hz,
80-H), 3.78ꢁ3.91 (15H, 5ꢃOCH3), 3.31ꢁ3.59 (m, 4H, –N(CH2)2–), 2.56 (m, 1H, –
CH(CH2)2–), 1.79ꢁ1.99 (m, 8H, –(CH2)2–; –CH(CH2)2–), 1.33ꢁ1.41 (m, 6H, –
References and notes
1. Cragg, G. M.; Kingston, D. G. I.; Newman, D. J. Anticancer Agents from Natural
Products; CRC Press Taylor & Francis Group: London UK, 2005. 1st ed., pp. 71.
2. Gordaliza, M.; Castro, M. A.; Miguel del Corral, J. M.; López-Vázquez, M. L.;
García, P. A.; Feliciano, A. S.; García-Grávalos, M. D.; Broughton, H. Tetrahedron
1997, 53, 15743.
3. Castro, M. A.; MigueldelCorral, J. M.; Gordaliza, M.; García, P.; Gómez-Zurita, M.
A.; García-Grávalos, M. D.; de la Iglesia-Vincente, J.; Gajate, C.; An, F.; Mollinedo,
F.; Feliciano, A. S. J. Med. Chem. 2004, 47, 1214.
(CH2)3–). Compound 22: Yield: 21.2%; mp: 115ꢁ117 °C; ½a D20
ꢁ358.8 (c, 0.55,
ꢂ
CHCl3); HR-ESI-MS: m/z 660.2937 [M+H]+ (calcd 660.2956); 1H NMR (300 MHz,
CDCl3): d 7.92 (d, 2H, J = 8.4 Hz, –ArH), 7.66 (d, 2H, J = 8.1 Hz, –ArH), 7.42ꢁ7.64
(m, 5H, –ArH), 7.47 (d, 1H, J = 14.4 Hz, 9-H), 7.11 (s, 1H, 7-H), 6.82 (d, 1H,
J = 15.9 Hz, 10-H), 6.82 (s, 1H, 6-H), 6.56 (s, 1H, 3-H), 6.47 (s, 2H, 20, 60-H), 4.35
(d, 1H, J = 6.0 Hz, 70-H), 3.99 (d, 1H, J = 6.3 Hz, 80-H), 3.79ꢁ3.91 (15H, 5ꢃOCH3),
3.34ꢁ3.60 (m, 4H, –N(CH2)2–); 1.84ꢁ2.00 (m, 4H, –(CH2)2–).
6. Wang, Z. Q.; Hu, H.; Chen, H. X.; Cheng, Y. C.; Lee, K. H. J. Med. Chem. 1992, 35,
871.
4. Cho, S. J.; Kashiwada, Y.; Bastow, K. F.; Cheng, Y. C.; Lee, K. H. J. Med. Chem. 1996,
39, 1396.
5. General Preparation of Compounds 15ꢁ22: To a solution of 12 or 14 (0.25 mmol)
in 15 mL of anhydrous CH2Cl2 were added p-TsOH (0.15 mmol) and the
corresponding acetophenones (0.5 mmol). The reaction mixture was stirred at
room temperature for 2 to 5 days and then washed with 5% NaHCO3 and
saturated aqueous NaCl. The organic layer was dried over Na2SO4 and
concentrated. The residue was chromatographed on silica gel and afforded the
7. Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
8. Gensler, W. J.; Gatsons, C. D. J. Org. Chem. 1966, 31, 3224.
9. Aso, Y.; Hayashi, Y.; Yoshioka, S.; Takeda, Y.; Kita, Y.; Nishimura, Y.; Arata, Y.
Chem. Pharm. Bull. 1989, 37, 422.