T.K. Khan et al. / Inorganica Chimica Acta 383 (2012) 257–266
265
carried out on a Nonius MACH3 four circle diffractometer at 293 K.
Acknowledgment
Structure solutions for the compounds 2, 3 and 4 were obtained
using direct methods (SHELXS-97) [46] and refined using full-ma-
trix least-squares methods on F2 using SHELXL-97 [47]. Com-
pounds 2 and 3 were crystallized with two molecules in the
asymmetric unit. There are no statistically significant differences
in the metrical parameters for the two molecules. In each mole-
cule, the furyl ring is disordered over two conformations.
M.R. thanks CSIR and DST for financial support. T.K.K. thanks In-
dian Institute of Technology for fellowship. We thank the DST
funded National Single Crystal X-ray Diffraction Facility for diffrac-
tion data. We also thank Dr. Evans Coutinho (Bombay College of
Pharmacy) for providing computational facility.
Appendix A. Supplementary material
4.4. Computational studies
1H, 1H–1H COSY, HSQC, HMBC, 13C, 19F and 11B NMR spectra and
mass spectra of all compounds. Supplementary data associated
with this article can be found, in the online version, at
The computational studies were performed with GAUSSIAN 03 [48]
installed on a windows operating system. The structures were ex-
tracted from the X-ray diffraction output files generated. Initial
structural rectifications, atom and bond typing and addition of
hydrogen atoms were done with Chem3D utility in Chemoffice.
For these studies, some conformers representing two possible rota-
tions of meso-furyl ring around BODIPY nucleus were also gener-
ated from the structures as templates. The structures were
energy optimized using quantum mechanics with density func-
tional theory (DFT) and B3LYP gradient corrected correlation func-
tional method in conjugation with standard 6-31G (p,d) basis set
and parameters. For the optimized structures, we carried out com-
plete full population analyses.
References
[1] R. Ziessel, G. Ulrich, A. Harriman, New J. Chem. 31 (2007) 496.
[2] A. Loudet, K. Burgess, Chem. Rev. 107 (2007) 4891.
[3] G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem., Int. Ed. 47 (2008) 1184.
[4] M. Kollmannsberger, T. Gareis, S. Heinl, J. Daub, J. Breu, Angew. Chem., Int. Ed.
36 (1997) 1333.
[5] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, J. Am. Chem. Soc. 122
(2000) 968.
[6] T. Matsumoto, Y. Urano, T. Shoda, H. Kojima, T. Nagano, Org. Lett. 9 (2007)
3375.
[7] S. Zrig, P. Remy, B. Andrioletti, E. Rose, I. Asselberghs, K. Clays, J. Org. Chem. 73
(2008) 1563.
[8] A.C. Benniston, G. Copley, A. Harriman, D.B. Rewinska, R.W. Harrington, W.
Clegg, J. Am. Chem. Soc. 130 (2008) 7174.
4.5. 3,5-Diphenyl-8-(2-furyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-
indacene (4)
[9] E. Lager, J. Liu, A. Aguilar-Aguilar, B.Z. Tang, E. Peña-Cabrera, J. Org. Chem. 74
(2009) 2053.
[10] X. Yin, L. Yongjun, L. Yuliang, Y. Zhu, X. Tang, H. Zheng, D. Zhu, Tetrahedron 65
(2009) 8373.
[11] R. Ziessel, P. Retailleau, K.J. Elliott, A. Harriman, Chem. Eur. J. 15 (2009) 10369.
[12] M.R. Rao, K.V.P. Kumar, M. Ravikanth, J. Organomet. Chem. 695 (2010) 863.
[13] A. Coskun, M.D. Yilmaz, E.U. Akkaya, Org. Lett. 9 (2007) 607.
[14] A. Loudet, R. Bandichhor, K. Burgess, A. Palma, S.O. McDonnell, M.J. Hall, D.F.
O’Shea, Org. Lett. 10 (2008) 4771.
Two neck 100 mL round bottom flask fixed with a reflux con-
denser was degassed with N2 for few minutes. Samples of 3
(100 mg, 0.60 mmol), phenyl-boronic acid (387 mg, 3.04 mmol)
and Na2CO3 (256 mg, 2.44 mmol) in water/THF/toluene (1:1:1)
15 ml was stirred under N2 for 5 min. Pd(PPh3)4 (68 mg, ꢁ5–
10 mol%), was added and the reaction mixture was refluxed at
80 °C. After completion of the reaction as judged by TLC analysis,
the reaction mixture was diluted with water (5 ml) and extracted
with diethyl ether. The combined organic layers were washed with
water, brine and dried over MgSO4. The solvent was evaporated
and the crude product was purified on a silica gel column using
petroleum ether/ethyl acetate 95:5 to afford 3,5-diphenyl-8-(phe-
nyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 4 in 75% yield. 1H
NMR (400 MHz, CDCl3, d in ppm): 6.68 (d, J = 4.27 Hz, 2H, pyrrole),
6.73 (s, 1H, furan), 7.09 (d, J = 3.36 Hz, 1H, furan), 7.40–7.44 (m, 8H,
phenyl), 7.83 (s, 1H, furan), 7.86 (d, J = 6.72 Hz, 4H, pyr-
role + phenyl). 13C NMR (100 MHz, CDCl3, d in ppm): 113.0,
118.8, 121.0, 128.3, 129.5, 130.3, 132.9, 134.0, 146.7, 149.0,
158.5, 168.2. 19F NMR (282.2 MHz, CDCl3, d in ppm): ꢂ132.99 (q,
JB-F = 64.0 Hz). 11B NMR (96.3 MHz, CDCl3, d in ppm): 1.57 (t,
JB-F = 32.0 Hz). MALDI-TOF: m/z = 408.5 [Mꢂ1]+. HRMS calcd for
(C25H17BF2N2O): 391.1418 [Mꢂ19]+ found 391.1399 [Mꢂ19]+.
[15] A. Palma, M. Tasior, D.O. Frimannsson, T. Vu, R. Méallet-Renault, D.F. O’Shea,
Org. Lett. 11 (2009) 3638.
[16] J. Murtagh, D.O. Frimannsson, D.F. O’Shea, Org. Lett. 11 (2009) 5386.
[17] B.A. Trofimov, Adv. Heterocycl. Chem. 51 (1990) 177.
[18] A.B. Zaitsev, R. Meallet-Renault, E.Y. Schmidt, A.I. Mikhaleva, S. Barde, C.
Dumas, A.M. Vasil’tsov, N.V. Zorina, R.B. Pansu, Tetrahedron 61 (2005) 2683.
[19] K. Rurack, U. Resch-Genger, Chem. Soc. Rev. 31 (2002) 116.
[20] Y. Mei, P.A. Bentley, W. Wang, Tetrahedron Lett. 47 (2009) 2447.
[21] A. Burghart, H. Kim, M.B. Welch, T. Joe Reibenspies, K. Burgess, J. Org. Chem. 64
(1999) 7813.
[22] L. Bonardi, G. Ulrich, R. Ziessel, Org. Lett. 10 (2008) 2183.
[23] M. Bröring, R. Krüger, S. Link, C. Kleeberg, S. Köhler, X. Xie, B. Ventura, L.
Flamigni, Chem. Eur. J. 14 (2008) 2976.
[24] T. Kowada, S. Yamaguchi, K. Ohe, Org. Lett. 12 (2010) 296.
[25] A. Nagai, Y. Chujo, Macromolecules 43 (2010) 193.
[26] S.H. Choi, K. Kim, J. Lee, Y. Do, D.G. Churchill, J. Chem. Crystallogr. 37 (2007)
315.
[27] E. Peña-Cabrera, A. Aguilar-Aguilar, M.G. Domínguez, E. Lager, R.Z. Vázquez,
J.G. Vargas, F.V. Garcia, Org. Lett. 9 (2007) 3985.
[28] S.H. Choi, K. Kim, J. Jeon, B. Meka, D. Bucella, K. Pang, S. Khatua, J. Lee, D.G.
Churchill, Inorg. Chem. 47 (2008) 11071.
[29] K. Umezawa, Y. Nakamura, H. Makino, D. Citterio, K. Suzuki, J. Am. Chem. Soc.
130 (2008) 1550.
[30] J.A. Jacobsen, J.R. Stork, D. Magde, S.M. Cohen, Dalton Trans. 39 (2010) 957.
[31] W. Qin, V. Leen, T. Rohand, W. Dehaen, P. Dedecker, M. Van, K. der Auweraer, L.
Robeyns, D. Van Meervelt, B. Beljonne, J.N. Van Averbeke, K. Clifford, K.
Driesen, N. Binnemans, N. Boens, J. Phys. Chem. A 113 (2009) 439.
[32] W. Qin, V. Leen, W. Dehaen, J. Cui, C. Xu, X. Tang, W. Liu, T. Rohand, D. Beljonne,
B. Van Averbeke, J.N. Clifford, K. Driesen, K. Binnemans, M. Van der Auweraer,
N. Boens, J. Phys. Chem. C 113 (2009) 11731.
[33] K. Kim, C. Jo, S. Easwaramoorthi, J. Sung, D.H. Kim, D.G. Churchill, Inorg. Chem.
49 (2010) 4881.
[34] A. Nagai, J. Miyake, K. Kokado, Y. Nagata, Y. Chujo, J. Am. Chem. Soc. 130 (2008)
15276.
4.6. 3,5-Di(2-thienyl)-8-(2-furyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-
indacene (5)
Compound 5 was prepared by following the same procedure as
for compound 4 using thiophene-2-boronic acid. The crude com-
pound was purified on silica column using petroleum ether as an
eluent and obtained the pure compound 5 in 33% yield. 1H NMR
(400 MHz, CDCl3,
d in ppm): 6.67 (s, 1H, furan), 6.86 (d,
J = 4.58 Hz, 2H, pyrrole), 6.98 (d, J = 2.74 Hz, 1H, furan), 7.18 (m,
2H, thiophene), 7.32 (d, J = 3.97 Hz, 2H, thiophene), 7.48 (d,
J = 4.27 Hz, 2H, pyrrole), 7.76 (s, 1H, furan), 8.18 (d, J = 3.05 Hz,
2H, thiophene). 19F NMR (282.2 MHz, CDCl3, d in ppm): ꢂ139.68
(q, JB-F = 64.0 Hz). 11B NMR (96.3 MHz, CDCl3, d in ppm): 1.86 (t,
JB-F = 32.07 Hz). MALDI-TOF: m/z = 420.6 [Mꢂ1]+. HRMS calcd for
(C21H13BF2N2OS2): 403.0546 [Mꢂ19]+ found: 403.0548 [Mꢂ19]+.
[35] H.L. Kee, C. Kirmaier, L. Yu, P. Thamyongkit, W.J. Youngblood, M.E. Calder, L.
Ramos, B.C. Noll, D.F. Bocian, W.R. Scheidt, R.R. Birge, J.S. Lindsey, D. Holten, J.
Phys. Chem. B 109 (2005) 20433.
[36] R.W. Wagner, J.S. Lindsey, Pure Appl. Chem. 68 (1996) 1373.
[37] T.K. Khan, M.R. Rao, M. Ravikanth, Eur. J. Org. Chem. (2010) 2314–2323.
[38] M. Kollmannsberger, K. Rurack, U. Resch-Genger, J. Daub, J. Phys. Chem. A 102
(1998) 10211.
[39] F. Amat-Guerri, Chem. Phys. Lett. 299 (1999) 315.