310
T. Doi et al.
LETTER
(10) (a) Kosaka, N.; Mitsunaga, M.; Longmire, M. R.; Choyke,
P. L.; Kobayashi, H. Int. J. Cancer 2011, 129, 1671.
(b) Baker, K. J. Proc. Soc. Exp. Biol. Med. 1966, 122, 957.
(11) (a) Ernst, L. A.; Gupta, R. K.; Mujumdar, R. B.; Waggoner,
A. S. Cytometry 1989, 10, 3. (b) Mujumdar, R. B.; Ernst, L.
A.; Mujumdar, S. R.; Waggoner, A. S. Cytometry 1989, 10,
11. (c) Southwick, P. L.; Ernst, L. A.; Tauriello, E. W.;
Parker, S. R.; Mujumdar, R. B.; Mujumdar, S. R.; Clever,
H. A.; Waggoner, A. S. Cytometry 1990, 11, 418.
(d) Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Lewis,
C. J.; Waggoner, A. S. Bioconjugate Chem. 1993, 4, 105.
(12) For reviews: (a) Robinson, B. Chem. Rev. 1963, 63, 373.
(b) Robinson, B. Chem. Rev. 1969, 69, 227. (c) Hughes,
D. L. Org. Prep. Proced. Int. 1993, 25, 607.
synthesized. The 1,3-dipolar cycloaddition of 15 with
benzyl azide was achieved using copper nanoparticles.
The process developed herein can become a versatile
method for the synthesis of NIR molecular imaging
probes.
Supporting Information for this article is available online at
Acknowledgment
We thank Prof. Jaiwook Park (POSTEC, Korea) for a generous gift
of copper nanoparticles in aluminum oxyhydroxide fiber. We also
thank Prof. Hideo Takeuchi (Tohoku University) for his kind help
in the measurement of NIR absorption. This study was supported by
the Asahi Glass Foundation.
(13) Borsche, W. Ber. Dtsch. Chem. Ges. 1917, 50, 1339.
(14) Boyer, J. H.; Buriks, R. S. Org. Synth., Collect. Vol. V 1973,
1067.
(15) Blanco, L.; Amice, P.; Conia, J. M. Synthesis 1976, 194.
(16) (a) RajanBabu, T. V.; Fukunaga, T. J. Org. Chem. 1984, 49,
4571. (b) RajanBabu, T. V.; Reddy, G. S.; Fukunaga, T.
J. Am. Chem. Soc. 1985, 107, 5473. (c) RajanBabu, T. V.;
Chenard, B. L.; Petti, M. A. J. Org. Chem. 1986, 51, 1704.
(17) RajanBabu et al. reported a-nitroarylation by aromatic
nucleophilic substitution with silyl enol ethers was
performed using TASF in THF–MeCN at rather lower
temperatures such as –60 °C. See ref. 16.
(18) Meisenheimer, J. Liebigs Ann. Chem. 1902, 323, 205.
(19) Saeki, S.; Hayashi, T.; Hamana, M. Heterocycles 1984, 22,
545.
(20) Synthesis of 5-amino-1-d-sulfobutyl-2,3,3-trimethyl-(3H)-
indolenine and its cyanine derivatives was reported in ref.
11b.
(21) Compound 3c was prepared from 1,1,2-trimethyl-(1H)-
benz[e]indole and 1,4-butane sultone according to standard
methods.
(22) Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991.
(23) Benson, R. C.; Kues, H. A. J. Chem. Eng. Data 1977, 22,
379.
(24) Tornøe, C. W.; Chirstensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057.
(25) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
References and Notes
(1) Caesar, J.; Shaldon, S.; Chiandussi, L.; Guevara, L.;
Sheriock, S. Clin. Sci. 1961, 21, 43.
(2) Flanagan, J. H. Jr.; Khan, S. H.; Menchen, S.; Soper, S. A.;
Hammer, R. P. Bioconjugate Chem. 1997, 8, 751.
(3) Licha, K.; Riefke, B.; Ntziachristos, V.; Becker, A.; Chance,
B.; Semmler, W. Photochem. Photobiol. 2000, 72, 392.
(4) Lin, Y.; Weissleder, R.; Tung, C.-H. Bioconjugate Chem.
2002, 13, 605.
(5) (a) Achilefu, S.; Jimenez, H. N.; Dorshow, R. B.; Bugaj, J.
E.; Webb, E. G.; Wilhelm, R. R.; Rajagopalan, R.; Johler, J.;
Erion, J. L. J. Med. Chem. 2002, 45, 2003. (b) Zhang, Z.;
Berezin, M. Y.; Kao, J. L. F.; d’Avignon, A.; Bai, M.;
Achilefu, S. Angew. Chem. Int. Ed. 2008, 47, 3584. (c) Pu,
Y.; Wang, W. B.; Das, B. B.; Achilefu, S.; Alfano, R. R.
Appl. Opt. 2008, 47, 2281. (d) Almutairi, A.; Guillaudeu,
S. J.; Berezin, M. Y.; Achilefu, S.; Fréchet, J. M. J. J. Am.
Chem. Soc. 2008, 130, 444.
(6) Pharm, W.; Cassell, L.; Gillman, A.; Koktysh, D.; Gore,
J. C. Chem. Commun. 2008, 16, 1895.
(7) Pauli, J.; Vag, T.; Haag, R.; Spieles, M.; Wenzel, M.; Kaiser,
W. A.; Resch-Genger, U.; Hilger, I. Eur. J. Med. Chem.
2009, 3496.
(8) Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. Curr.
Opin. Chem. Biol. 2010, 14, 64.
(26) Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S.
Tetrahedron 2001, 57, 1551.
(27) Doi, T.; Numajiri, Y.; Takahashi, T.; Takagi, M.; Shin-ya, K.
Chem. Asian J. 2011, 6, 180.
(9) (a) Samanta, A.; Vendrell, M.; Das, R.; Chang, Y.-T. Chem.
Commun. 2010, 46, 7406. (b) Samanta, A.; Vendrell, M.;
Yun, S.-W.; Guan, Z.; Xu, Q.-H.; Chang, Y.-T. Chem. Asian
J. 2011, 6, 1353. (c) Samanta, A.; Maiti, K. K.; Soh, K.-S.;
Liao, X.; Vendrell, M.; Dinishi, U. S.; Yun, S.-W.;
Bhuvaneswari, R.; Kim, H.; Rautela, S.; Chung, J.; Olivo,
M.; Chang, Y.-T. Angew. Chem. Int. Ed. 2011, 50, 6089.
(28) Park, I. S.; Kwon, M. S.; Kim, Y.; Lee, J. S.; Park, J. Org.
Lett. 2008, 10, 497.
(29) It has been demonstrated that fluorescence of a low quantum
yield molecular fluorophore, such as ICG, is strongly
enhanced by the plasmon resonance energy utilizing metalic
nanoshells, see: (a) Tam, F.; Goodrich, G. P.; Johnson, B.
R.; Halas, N. J. Nano Lett. 2007, 7, 496. (b) Bardhan, R.;
Grady, N. K.; Halas, N. J. Small 2008, 4, 1716.
Synlett 2012, 23, 306–310
© Thieme Stuttgart · New York