H. W. Lam, J. Org. Chem., 2009, 74, 7849–7858; (c) B. Gourdet,
D. L. Smith and H. W. Lam, Tetrahedron, 2010, 66, 6026–6031;
(d) B. Gourdet, M. E. Rudkin and H. W. Lam, Org. Lett., 2010, 12,
2554–2557; (e) B. Gourdet and H. W. Lam, Angew. Chem., Int.
Ed., 2010, 49, 8733–8737.
Notes and references
1 For relevant reviews, see: (a) C. Bruneau and P. H. Dixneuf, Chem.
Commun., 1997, 507–512; (b) P. H. Dixneuf, C. Bruneau and
S. Derien, Pure Appl. Chem., 1998, 70, 1065–1070;
(c) C. Bruneau and P. H. Dixneuf, Acc. Chem. Res., 1999, 32,
311–323; (d) F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev.,
2004, 104, 3079–3159; (e) R. Drozdzak, B. Allaert, N. Ledoux,
I. Dragutan and F. Verpoort, Adv. Synth. Catal., 2005, 347,
1721–1743; (f) C. Bruneau and P. H. Dixneuf, Angew. Chem.,
Int. Ed., 2006, 45, 2176–2203; (g) L. J. Gooßen, N. Rodrıguez and
K. Gooßen, Angew. Chem., Int. Ed., 2008, 47, 3100–3120.
2 For an extensive discussion of the intramolecular variant, see
ref. 1d and references cited therein. For other examples not covered
in ref. 1d, see: (a) S. Elgafi, L. D. Field and B. A. Messerle,
J. Organomet. Chem., 2000, 607, 97–104; (b) E. Mas-Marza,
M. Sanau and E. Peris, Inorg. Chem., 2005, 44, 9961–9967;
(c) X. Li, A. R. Chianese, T. Vogel and R. H. Crabtree, Org.
Lett., 2005, 7, 5437–5440; (d) E. Genin, P. V. Toullec,
S. Antoniotti, C. Brancour, J.-P. Genet and V. Michelet, J. Am.
Chem. Soc., 2006, 128, 3112–3113; (e) H. Harkat, J.-M. Weibel and
P. Pale, Tetrahedron Lett., 2006, 47, 6273–6276.
3 The conjugate addition of carboxylates to electron-deficient
alkynes can also be promoted by DABCO. See: M.-J. Fan,
G.-Q. Li and Y.-M. Liang, Tetrahedron, 2006, 62, 6782–6791.
4 (a) H. Lemaire and H. J. Lucas, J. Am. Chem. Soc., 1955, 77,
939–945; (b) P. F. Hudrlik and A. M. Hudrlik, J. Org. Chem., 1973,
38, 4254–4258; (c) R. C. Larock, K. Oertle and K. M. Beatty,
J. Am. Chem. Soc., 1980, 102, 1966–1974; (d) Y. Kita, S. Akai,
N. Ajimura, M. Yoshigi, T. Tsugoshi, H. Yasuda and Y. Tamura,
J. Org. Chem., 1986, 51, 4150–4158.
5 Y. Shvo and M. Rotem, Organometallics, 1983, 2, 1689–1691.
6 See ref. 1 and references cited therein. For recent examples of
ruthenium-catalyzed additions of carboxylic acids to alkynes,
see: (a) H. Kim, S. D. Goble and C. Lee, J. Am. Chem. Soc.,
2007, 129, 1030–1031; (b) C. S. Yi and R. Gao, Organometallics,
2009, 28, 6585–6592; (c) K. Tanaka, S. Saitoh, H. Hara and
Y. Shibata, Org. Biomol. Chem., 2009, 7, 4817–4820; (d) J. Tripathy
and M. Bhattacharjee, Tetrahedron Lett., 2009, 50, 4863–4865;
(e) Q. Willem, F. Nicks, X. Sauvage, L. Delaude and
A. Demonceau, J. Organomet. Chem., 2009, 694, 4049–4055;
(f) F. Nicks, R. Aznar, D. Sainz, G. Muller and A. Demonceau,
Eur. J. Org. Chem., 2009, 5020–5027; (g) F. Nicks, L. Libert,
L. Delaude and A. Demonceau, Aust. J. Chem., 2009, 62, 227–231;
(h) S. Berger and E. Haak, Tetrahedron Lett., 2010, 51, 6630–6634;
(i) M. Nishiumi, H. Miura, K. Wada, S. Hosokawa and M. Inoue,
Adv. Synth. Catal., 2010, 352, 3045–3052; (j) V. Cadierno, J. Francos
and J. Gimeno, Organometallics, 2011, 30, 852–862; (k) M. Kawatsura,
J. Namioka, K. Kajita, M. Yamamoto, H. Tsuji and T. Itoh, Org.
Lett., 2011, 13, 3285–3287.
16 For reviews of ynamide chemistry, see: (a) K. A. DeKorver, H. Li,
A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem.
Rev., 2010, 110, 5064–5106; (b) G. Evano, A. Coste and K. Jouvin,
Angew. Chem., Int. Ed., 2010, 49, 2840–2859; (c) A. R. Katritzky,
R. Jiang and S. K. Singh, Heterocycles, 2004, 63, 1455–1475;
(d) J. A. Mulder, K. C. M. Kurtz and R. P. Hsung, Synlett,
2003, 1379–1390; (e) C. A. Zificsak, J. A. Mulder, R. P. Hsung,
C. Rameshkumar and L.-L. Wei, Tetrahedron, 2001, 57,
7575–7606.
17 For the addition of diphenyldithiophosphinic acid and thiobenzoic
acid to ynamides, see: (a) H. Yasui, H. Yorimitsu and K. Oshima,
Chem. Lett., 2008, 37, 40–41; (b) S. Kanemura, A. Kondoh,
H. Yasui, H. Yorimitsu and K. Oshima, Bull. Chem. Soc. Jpn.,
2008, 81, 506–514.
18 For Brønsted- or Lewis acid-catalyzed additions of alcohols or
silanols to ynamides, followed by subsequent reactions, see:
(a) J. A. Mulder, R. P. Hsung, M. O. Frederick, M. R. Tracey and
C. A. Zificsak, Org. Lett., 2002, 4, 1383–1386; (b) M. O. Frederick,
R. P. Hsung, R. H. Lambeth, J. A. Mulder and M. R. Tracey, Org.
Lett., 2003, 5, 2663–2666; (c) N. P. Grimster, D. A. A. Wilton, L. K.
M. Chan, C. R. A. Godfrey, C. Green, D. R. Owen and M. J. Gaunt,
Tetrahedron, 2010, 66, 6429–6436.
19 S. Kamer, K. Dooleweerdt, A. T. Lindhart, M. Rottlander and
T. Skrydstrup, Org. Lett., 2009, 11, 4208–4211.
20 The product resulting from the addition of acetic acid to 1a
was relatively unstable, and underwent decomposition into
N-phenylacetyloxazolidin-2-one during attempted purification on
silica.
21 Several ruthenium salts surveyed were unsatisfactory. For
example, heating 1a with propionic acid in toluene at 70 1C for
24 h in the presence of RuCl3 hydrate (7 mol%) provided only 23%
conversion into 2a. The use of [RuCp*(MeCN)3]PF6 (2 mol%) led
to complete consumption of 1a after heating in toluene at 70 1C for
3 d, but a mixture of 2a and N-phenylacetyloxazolidin-2-one
(3 : 2 ratio) was produced. The use of [RuCl2(p-cymene)]2
(1 mol%), P(2-Fur)3 (2 mol%), and Na2CO3 (4 mol%) in
toluene/THF at 70 1C for 24 h, which are conditions similar to
those described by Goossen and co-workers for the addition of
carboxylic acids to terminal alkynes, provided ca. 14% of 2a
accompanied by significant quantities of side products; see:
L. J. Goossen, J. Paetzold and D. Koley, Chem. Commun., 2003,
706–707.
22 Other metal salts surveyed for the addition of acetic acid or
propionic acid to 1a included Zn(OTf)2, Au(PPh3)Cl, Ni(acac)2,
Ni(PPh3)2Cl2, CuOAc, and Cu(OAc)2H2O. In these cases, only
starting materials were observed. For the addition of acetic acid or
propionic acid to 1a, the use of Pd(TFA)2, [Rh(cod)(MeCN)2]BF4,
or Pd(dba)2 gave significant quantities of hydroacylation products,
but side products were also present.
7 A. Lumbroso, N. R. Vautravers and B. Breit, Org. Lett., 2010, 12,
5498–5501.
8 H. Nakagawa, Y. Okimoto, S. Sakaguchi and Y. Ishii, Tetrahedron
Lett., 2003, 44, 103–106.
9 (a) X. Lu, G. Zhu and S. Ma, Tetrahedron Lett., 1992, 33,
7205–7206; (b) T. Wakabayashi, Y. Ishii, T. Murata, Y. Mizobe
and M. Hidai, Tetrahedron Lett., 1995, 36, 5585–5588;
(c) Q. Zhang, W. Xu and X. Lu, J. Org. Chem., 2005, 70,
1505–1507; (d) L. Zhao, X. Lu and W. Xu, J. Org. Chem., 2005,
70, 4059–4063; (e) J. Song, Q. Shen, F. Xu and X. Lu, Tetrahedron,
2007, 63, 5148–5153; (f) D.-J. Tang, B.-X. Tang and J.-H. Li,
J. Org. Chem., 2009, 74, 6749–6755; (g) H. Liu, J. Yu, L. Wang and
X. Tong, Tetrahedron Lett., 2008, 49, 6924–6928; (h) C. Muthiah,
M. A. Arai, T. Shinohara, T. Arai, S. Takizawa and H. Sasai,
Tetrahedron Lett., 2003, 44, 5201–5204.
10 R. Hua and X. Tian, J. Org. Chem., 2004, 69, 5782–5784.
11 Y. Ishino, I. Nishiguchi, S. Nakao and T. Hirashima, Chem. Lett.,
1981, 641–644.
12 B. C. Chary and S. Kim, J. Org. Chem., 2010, 75, 7928–7931.
13 (a) C. Ruppin and P. H. Dixneuf, Tetrahedron Lett., 1986, 27,
6323–6324; (b) A. Kabouche, Z. Kabouche, C. Bruneau and
P. H. Dixneuf, J. Soc. Alger. Chim., 1999, 1, 141–148.
23 The regio- and stereoselectivities of the hydroacyloxylation reac-
tions herein were assigned by analogy to the reaction producing 3e,
the structure of which was determined by X-ray crystallography.
See ESI for details. In addition, the formation of products 4 and 6
from 2a (Scheme 1) lends further support for the regioselectivity of
the reaction producing 2a (Table 1, entry 1).
24 For similar rearrangements observed during the epoxidation of enol
esters, see: (a) E. Alvarez-Manzaneda, R. Chahboun, E. Alvarez,
J. M. Ramos, J. J. Guardia, I. Messouri, I. Chayboun, A. I. Mansour
and A. Dabdouh, Synthesis, 2010, 3493–3503; (b) F. Algarra,
M. V. Baldovı, H. Garcıa, M. A. Miranda and J. Primo, Monatsh.
Chem., 1993, 124, 209–215.
25 In the absence of additional experiments, we cannot speculate
on the most likely mechanism for the Pd-catalyzed hydroacyl-
oxylations described herein. However, possibilities include: (i) the
generation of palladium hydride intermediates from oxidative
addition of the carboxylic acid to Pd(0), hydropalladation of
the ynamide, and C–O reductive elimination, or (ii) carboxylate
addition to N-acylketeniminium intemediates generated either by
ynamide protonation or p-Lewis acid activation of the ynamide by
Pd(II).
14 B. M. Trost and A. McClory, Chem.–Asian J., 2008, 3, 164–194.
15 (a) B. Gourdet and H. W. Lam, J. Am. Chem. Soc., 2009, 131,
3802–3803; (b) B. Gourdet, M. E. Rudkin, C. A. Watts and
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1505–1507 1507