S. M. Sakya et al. / Tetrahedron Letters 53 (2012) 723–725
725
Bailey, J. M.; Scott, J. S.; Basilla, J. B.; Bolton, V. J.; Boyfield, I.; Evans, D. G.;
Fleury, E.; Heightman, T. D.; Jarvie, E. M.; Lawless, K.; Matthews, K. L.; McKay,
F.; Mok, H.; Muir, A.; Orlek, B. S.; Sanger, G. J.; Stemp, G.; Stevens, A. J.;
Thompson, M.; Ward, J.; Vaidya, K.; Westaway, S. M. Bioorg. Med. Chem. Lett.
2009, 19, 6452–6458; (c) Brioni Jorge, D.; Esbenshade, T. A.; Garrison, T. R.;
Bitner, S. R.; Cowart, M. D. J. Pharmacol. Exp. Ther. 2011, 336, 38–46; (d) Coe, J.
W.; Rollema, H.; O’Neill, B. T. Ann. Rep. Med. Chem. 2009, 336, 71–101; (e) Ghali
Jalal, K.; Hamad, B.; Yasothan, U.; Kirkpatrick, P.; Tolvaptan Nat. Rev. Drug Disc.
2009, 8, 611–612; (f) O’Neill, M. J.; Astles, P.; Dell, C. P.; Keenan, M.; Murray, T.
K.; Lakics, V.; Visanji, N. P.; Duty, S. Med. Chem. Rev. Online 2005, 2, 455–470; (g)
Zhao, H.; Guo, Z. Drug Discovery Today 2009, 14, 516–522; (h) Zhen, X.;
Goswami, S.; Friedman, E. Pharmacol. Biochem. Behav. 2005, 80,
597–601.
O
N
O
Ph
Ph
Ph
a
b
HO
NC
N
N
Boc
N
N
Boc
Boc
3
16
17
Scheme 5. Reagents and conditions: (a) (CH3)3COCH(N(CH3)2)2, DME, 65 °C, 99%;
(b) 2-cyanoacetamide, NaOMe, DMF, 70 °C, 21%.
A single crystal X-ray structure of compound 2 confirmed our
NMR characterization, with the expected diequatorial anti-3,5-
phenyl-ester stereorelationship (Fig. 3).
2. (a) Al-Fulaij, M. A.; Ren, Y.; Beinborn, M.; Kopin, A. S. J. Mol. Neurosci. 2008, 34,
211–223; (b) Dall’Olio, R.; Gandolfi, O.; Gaggi, R. Behav. Pharmacol. 2000, 11,
29–36; (c) Fletcher, P. J.; Tenn, C. C.; Rizos, Z.; Lovic, V.; Kapur, S.
Psychopharmacology (Berlin, Germany) 2005, 183, 190–200; (d) Lambe, E. K.;
Aghajanian, G. K. Neuroscience (San Diego, CA, United States) 2007, 145, 900–
910; (e) Mamelak, M.; Chiu, S.; Mishra, R. K. Eur. J. Pharmacol. 1993, 233, 175–
176; (f) McLean, S. L.; Idris, N. F.; Woolley, M. L.; Neill, J. C. Eur.
Neuropsychopharmacol. 2009, 19, 440–450; (g) Rosengarten, H.; Bartoszyk, G.
D.; Quartermain, D.; Lin, Y. Prog. Neuropsychopharmacol. Biol. Psych. 2006, 30,
273–279; (h) Zhang, L.; Yang, H.; Zhao, H.; Zhao, C. Neurochem. Int. 2011, 58,
281–294.
3. (a) Monnier, Le.; de Gouville, A. C.; Lawson, K.; Thiry, C.; Cavero, I. J. Pharmacol.
Exp. Ther. 1991, 256, 1049–1056; (b) Polakowski, J. S.; Segreti, J. A.; Cox, B. F.;
Hsieh, G. C.; Kolasa, T.; Moreland, R. B.; Brioni, J. D. Clin. Exp. Pharmacol. Phys.
2004, 31, 837–841; (c) Weinstock, J.; Ladd, D. L.; Wilson, J. W.; Brush, C. K.; Yim,
N. C.; Gallagher, G., Jr.; McCarthy, M. E.; Silvestri, J.; Sarau, H. M.; Flaim, K. E. J.
Med. Chem. 1986, 29, 2315–2325.
4. For reviews, see: (a) Kunick, C. Curr. Pharm. Des. 1999, 5, 181–194; (b)
McCarthy, K. E. Curr. Pharm. Des. 2000, 6, 1057–1083; (c) Meigh, J. P. K. Sci.
Synth. 2004, 17, 825–927; (d) Sano, T. Trends Heterocycl. Chem. 2001, 7, 117–
142; (e) Tymoshenko, D. O. Adv. Heterocycl. Chem. 2008, 96, 1–80.
5. Dahmann, G.; Himmelsbach, F.; Wittneben, H.; Pautsch, A.; Prokopowicz, A. S.;
Krist, B.; Schnapp, G.; Steegmaier, M.; Lenter, M.; Schoop, A.; Steurer, S.;
Spevak, W. 2002-EP11453 2003032997, 20021014., 2003.
Ketone
3 was used successfully to furnish a variety of
heteroaromatic-fused benzazepine derivatives (e.g., 1) for screen-
ing purposes, and one such reaction sequence is described in
Scheme 5. Condensation of 3 with Brederick’s reagent (tert-butoxy
bis(dimethylamino)methane) in warm DME gave enaminone 16,
which was subsequently treated with cyanoacetimide under basic
conditions to furnish pyridoazepine 17 in modest overall yield
(ꢀ21% from 3).
In conclusion, two distinct synthetic routes to azepinones 2 and
3 were developed, and these key intermediates were further elab-
orated to novel 3-aryl substituted fused heterocyclic benzazapines.
An in situ per-bromination/debromination of azepinone ketoester
13a generated vinyl bromide 5, a versatile intermediate for the
construction of hetereoazepinones such as 17. This route enabled
late-stage exploration around the 3-aryl group giving access to
additional heteroaromatic variants bearing structural similarities
to known bioactive phenylbenzazepines.
6. (a) Felpin, F.-X.; Miqueu, K.; Sotiropoulos, J.-M.; Fouquet, E.; Ibarguren, O.;
Laudien, J. Chem. -A Eur. J. 2010, 16, 5191–5204; (b) Grosjean, C.; Novakovic, K.;
Scott, S. K.; Whiting, A.; Willis, M. J.; Wright, A. R. J. Mol. Catal. A: Chem. 2008,
284, 33–39.
Acknowledgments
7. (a) Agami, C.; Couty, F.; Hamon, L.; Venier, O. Tetrahedron Lett. 1993, 34, 4509–
4512; (b) Agami, C.; Couty, F.; Hamon, L.; Venier, O. Bull. Soc. Chim. Fr. 1995,
132, 808–814.
8. (a) Roglans, A.; Marquet, J.; Moreno-Manas, M. Synth. Commun. 1992, 22, 1249;
(b) Finery, C. G.; Riley, T. N. J. Med. Chem. 1980, 23, 895.
We are grateful to Mark Bundesmann for HPLC studies on the
Troc bromination product, Brian Samas for X-ray crystallography
support, and Christopher O’Donnell for helpful discussions.
9. Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2011, 133,
8834.
Supplementary data
10. For similar examples, see: (a) Edwards, O. E.; Rank, W. Can. J. Chem. 1990, 68,
1425–1436; (b) Sevenard, D. V.; Kazakova, O.; Chizhov, D. L.; Yachevskii, D. S.;
Lork, E.; Poveleit, J.; Charushin, V. N.; Roeschenthaler, G.-V. Helv. Chim. Acta
2007, 90, 369–384; (c) Sevenard, D. V.; Vorobyev, M.; Sosnovskikh, V. Y.;
Wessel, H.; Kazakova, O.; Vogel, V.; Shevchenko, N. E.; Nenajdenko, V. G.; Lork,
E.; Roeschenthaler, G.-V. Tetrahedron 2009, 65, 7538–7552.
11. (a) Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchib, T.
Chem. Commun. 2004, 470; (b) Roglans, A.; Marquet, J.; Moreno-Mañas, M.
Synth. Commun. 1992, 22, 1249.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Becker, A.; Kohfeld, S.; Lader, A.; Preu, L.; Pies, T.; Wieking, K.; Ferandin, Y.;
Knockaert, M.; Meijer, L.; Kunick, C. Eur. J. Med. Chem. 2010, 45, 335–342; (b)