H. N. Nguyen et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1055–1060
1059
2. (a) Priest, B. T. Curr. Opin. Drug Discov. Devel. 2009, 12, 682; (b) Dejgard, A.;
Petersen, P.; Kastrup, J. Lancet 1988, 1, 9; (c) Chabal, C.; Jacobson, L.; Mariano,
A.; Chaney, E.; Britell, C. W. Anesthesiology 1992, 76, 513; (d) Kingery, W. S. Pain
1997, 73, 123.
A. Manual electrophysiology recording
3. (a) Cox, J. J.; Reimann, F.; Nicholas, A. K.; Thornton, G.; Roberts, E.; Springell, K.;
Karbani, G.; Jafri, H.; Mannan, J.; Raashid, Y.; Al-Gazali, L.; Hamamy, H.;
Valante, E.-M.; Gorman, S.; Williams, R.; McHale, D. P.; Wood, J. N.; Gribble, F.
M.; Woods, C. G. Nature 2006, 444, 894; (b) Goldberg, Y. P.; MacFarlane, J.;
MacDonald, M. L.; Thompson, J.; Dube, M.-P.; Mattice, M.; Fraser, R.; Young, C.;
Hossain, S.; Pape, T.; Payne, B.; Radomski, C.; Donaldson, G.; Ives, E.; Cox, J.;
Younghusband, H. B.; Green, R.; Duff, A.; Boltshauser, E.; Grinspan, G. A.;
Dimon, J. H.; Sibley, B. G.; Andria, G.; Toscano, E.; Kerdraon, J.; Bowsher, D.;
Pimstone, S. N.; Samuels, M. E.; Sherrington, R.; Hayden, M. R. Clin. Genet. 2007,
71, 311; (c) Fertleman, C. R.; Baker, M. D.; Parker, K. A.; Moffatt, S.; Elmslie, F.
V.; Abrahamsen, B.; Ostman, J.; Klugbauer, N.; Wood, J. N.; Gardiner, R. M.;
Rees, M. Neuron 2006, 52, 767; (d) Ahmad, S.; Dahllund, L.; Eriksson, A. B.;
Hellgren, D.; Karlsson, U.; Lund, P.-E.; Meijer, I. A.; Meury, L.; Mills, T.; Moody,
A.; Morinville, A.; Morten, J.; O’Donnell, D.; Raynoschek, C.; Salter, H.; Rouleau,
G. A.; Krupp, J. J. Hum. Mol. Genet. 2007, 16, 2114.
4. Beaudoin, S.; Laufersweiler, M. C.; Markworth, C. J.; Marron, B. E.; Millan, D. S.;
Rawson, D. J.; Reister, S. M.; Sasaki, K.; Storer, R. I.; Stupple, P. A.; Swain, N. A.;
West, C. W.; Zhou, S. WO 2010079443, 2010, 392.
B. Data summary
5. (a) England, S.; Rawson, D. Future Med. Chem. 2010, 2, 775; (b) Zuliani, V.;
Rivara, M.; Fantini, M.; Costantino, G. Expert Opin. Ther. Pat. 2010, 20, 755.
6. Gonzalez, J. E.; Termin, A. P.; Wilson, D. M. In Voltage-gated ion channels as drug
targets; Triggle, G., Rampe, Zheng, Eds.; Verlag GmbH and Co., KGaA: Germany,
2006; p 168.
7. Bregman, H.; Berry, L.; Buchanan, J. L.; Chen, A.; Du, B.; Feric, E.; Hierl, M.;
Huang, L.; Immke, D.; Janosky, B.; Johnson, D.; Li, X.; Ligutti, J.; Liu, D.;
Malmberg, A.; Matson, D.; McDermott, J.; Miu, P.; Nguyen, H. N.; Patel, V. F.;
Waldon, D.; Wilenkin, B.; Zheng, X.-M.; Zou, A.; McDonough, S. I.; DiMauro, E. F.
J. Med. Chem. 2011, 32, 4427–4445.
O
Me
N
H2N
N
S
hNav1.7 PX IC50 (µM)
0.42a
8. PX protocol: hNav1.7 or hNav1.5-expressing HEK 293 cells were voltage
hNav1.7 Man IC50 (µM) 0.080 [0.50]a
clamped at
a membrane potential that produced average 20% fractional
hNav1.5 PX IC50 (µM)
0.20a
>15
inactivation. Dose–response curves were built from an ensemble of single-
concentration tests on many cells. For details of electrophysiology and in vivo
assays, see Bregman, H. et al.
hERG dofetilide binding, derived Ki (µM)
HLM / RLM CLint (µL/min/mg)
9. Manual electrophysiology was used to determine compound potency on
noninactivated channels (holding voltage set to À140 mV) and on channels
with holding voltage set and adjusted as necessary during the experiment to
produce steady 20% inactivation. Values are average of n = 2 cells. Compounds
1 and 8 blocked and reversed with fast kinetics. Compound 9 had a slower off-
rate but still blocked with rapid onset.
164 / 57
14, 10, 1
16 / 1.0b
Solubility11 - SIF, PBS, 0.01 N HCl (µg/mL)
Permeability (10-6 cm/s) / Efflux ratio
CL (L/h/kg)
Vss (L/kg)
t1/2 (h)
1.1c
2.6
3.9
10. Marron, B. Annu. Rep. Med. Chem. 2006, 41, 59.
11. Tan, H.; Semin, D.; Wacker, M.; Cheetham, J. JALA 2005, 10, 364.
12. An alternative synthesis of compound 9 via a Mitsunobu reaction is shown in
Scheme 2.
13. This compound was purchased from HDH Pharma Inc. LC–MS (ESI) Calcd for
C5H7N3OS: [M]+ = 157. Found [M+H]+ = 158. 1H NMR (Bruker, 400 MHz, DMSO-
d6) d ppm 11.73 (br s, 1H), 6.38 (br s, 2H), 4.86 (s, 1H), 3.43 (s 3H).
Figure 3. Potent block of Nav1.7 by N-methyl aminopyrimidinone lead 9. A. Percent
Nav1.7 current remaining as a function of concentration of compound 9, at holding
potentials where Nav1.7 was fully noninactivated and where Nav1.7 was 20%
inactivated (average of n = 2 cells for each condition). Curves were fitted to the
equation I/I0 = 1/{1+(concentration/IC50)n}. B. aElectrophysiology IC50 of partially
inactivated channels is shown. Where applicable, bracket indicates IC50 of fully
noninactivated channels. Inhibitory activity represents an average of at least two
determinations. bData obtained from MDR1-LLC-PK1 cells, pig kidney cells
14. Metabolite identification in fresh rat hepatocytes confirmed that lead
8
underwent glucuronidation. Full scan positive ion mode of the incubated
material showed parent 8 at 20.1 min, m/z = 290 and glucuronide adduct at
18.7 min, m/z = 466.
15. This analog was purchased from Otava.
16. The parent compound was not detected on the LC–MS after 15 min of
incubation with rat liver microsomes.
expressing human MDR1, at 5 lM in the presence of 0.1% BSA and permeability
estimated by averaging apparent permeability values in the apical to basolateral
and basolateral to apical directions. cMale Sprague–Dawley rats were dosed
intravenously at 0.5 mg/kg in 0.5 mL/kg of 100% DMSO.
17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J.
C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara,
M.; Toyota, K.; Fukuda, R. H., J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P.
Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko,
A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian
03, Revision C.02; Gaussian, Inc., Wallingford CT, 2004.
reduced rat in vivo clearance possibly by suppressing glucuronida-
tion, while maintaining state-dependence and excellent selectivity
over hERG.
Acknowledgements
We would like to thank Dr. Steve Hollis and Paul Krolikowski for
structural determination, Dr. Hakan Gunaydin for modeling/com-
putation, Dan Waldon for glucuronidation determination, Grace
Bi and Larry Miller for purification support, and Dr. Margaret Y.
Chu-Moyer for proofreading the manuscript.
18. The carbon shift data supported the structure of pyrimidin-4(1H)-one 37.
However, line-broadening in proton and carbon spectra suggested the double-
bond was likely moving between the two ring-nitrogens suggesting that
pyrimidin-4(1H)-one 37 and aminopyrimidin-4(3H)-one 8 were in equilibrium
in DMSO-d6.
Supplementary data
19. Each structure was confirmed by 1D and 2D NMR analyses. 1H NMR chemical
shifts in DMSO-d6, LCMS and HPLC retention times distinguished and
confirmed each methylated isomer. Chemical shifts of methyl group were
3.21, 3.33, and 3.78 ppm for 9, 10, and 30 respectively. The 1H NMR chemical
shift of the O-methylated analog (30) was shifted down field as expected. 1H
NMR (Bruker, 400 MHz, DMSO-d6) d ppm for 9: 7.31–7.41 (dd, J = 26, 8.5 Hz,
4H), 6.51 (br s, 1H), 4.93 (s, 1H), 4.37 (s, 2H), 3.21 (s, 3H), 1.26 (s, 9 H); for 10:
7.34 (m, 4H), 6.55 (s, 2H), 4.94 (s, 1H), 4.30 (s, 2H), 3.33 (s, 3H), 1.26 (s, 9H); for
Supplementary data associated with this article can be found, in
References and notes
1. Cummins, T. R.; Sheets, P. L.; Waxman, S. G. Pain 2007, 131, 243.