ORGANIC
LETTERS
2012
Vol. 14, No. 3
890–893
Copper(I)-Catalyzed Boryl Substitution of
Unactivated Alkyl Halides
Hajime Ito* and Koji Kubota
Division of Chemical Process Engineering, Graduate School of Engineering,
Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
Received December 21, 2011
ABSTRACT
Borylation of alkyl halides with diboron proceeded in the presence of a copper(I)/Xantphos catalyst and a stoichiometric amount of K(O-t-Bu) base.
The boryl substitution proceeded with normal and secondary alkyl chlorides, bromides, and iodides, but alkyl sulfonates did not react. Menthyl
halides afforded the corresponding borylation product with excellent diastereoselectivity, whereas (R)-2-bromo-5-phenylpentane gave a racemic
product. Reaction with cyclopropylmethyl bromide resulted in ring-opening products, suggesting the reaction involves a radical pathway.
Organoboron compounds are indispensable synthetic
reagents in organic synthesis; much effort has therefore
been devoted to the development of an efficient synthesis
of organoborons.1ꢀ8 Although many excellent procedures
have been reported, boryl substitution of alkyl halides is
still challenging. In conventional procedures for organo-
boron synthesis, alkyl halides are the starting materials for
the organometallic nucleophiles, such as Grignard or
organolithium reagents, which react with boron electro-
philes. This procedure has significant limitations, espe-
cially in the presence of the functional groups often found
in structurally complex molecules. Direct borylation of
alkyl halides should be quite promising in this respect.
Yamashita and Nozaki recently created a boryllithium
(1) (a) Boronic Acids: Preparation and Applications in Organic Synthe-
sis, Medicine and Materials, 2nd, Revised, ed.; Hall, D. G., Ed.; Wiley-
VCH: Weinheim, 2011. (b) Matteson, D. S. Stereodirected Synthesis with
Organoboranes; Springer: Berlin, 1995. (c) Boron Compounds, Science of
Syntheses; Kaufmann, D., Ed.; Georg Thieme Verlag: Stuttgart, 2005; Vol. 6.
(d) Chemler, S. R.; Roush, R. W. In Modern Carbonyl Chemistry; Otera,
J., Ed.; Wiley-VCH: Weinheim, 2000; pp 403ꢀ490. (e) Miyaura, N;
Yamamoto, Y. In Comprehensive Organometallic Chemistry III; Crabtree,
R. H., Mingos, M. P.; Elsevier: Amsterdam, 2007; Vol. 9, pp 146ꢀ244.
(2) For selected reviews of transition-metal-catalyzed reactions, see:
(a) Crudden, C. M.; Edwards, D. Chem.;Eur. J. 2003, 4695.
(b) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535. (c) Dang, L.;
Lin, Z. Y.; Marder, T. B. Chem. Commun. 2009, 3987.
(5) For selected examples of copper(I)-catalyzed reactions of R,
β-unsaturated carbonyl compounds, see: (a) Takahashi, K.; Ishiyama, T.;
Miyaura, N. Chem. Lett. 2000, 982. (b) Takahashi, K.; Ishiyama, T.;
Miyaura, N. J. Organomet. Chem. 2001, 625, 47. (c) Mun, S.; Lee, J.;
Yun, J. Org. Lett. 2006, 8, 4887. (d) Lee, J.; Yun, J. Angew. Chem., Int.
Ed. 2008, 47, 145. (e) Bonet, A.; Lillo, V.; Ramirez, J.; Diaz-Requejo, M.;
Fernandez, E. Org. Biomol. Chem. 2009, 7, 1533. (f) Chea, H.; Sim, H.;
Yun, J. Adv. Synth. Catal. 2009, 351, 855. (g) Chen, I.-H.; Yin, L.; Itano,
W.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 11664.
(h) O’Brien, J. M.; Lee, K.-s.; Hoveyda, A. H. J. Am. Chem. Soc. 2010,
132, 10630. (i) Gao, M.; Thorpe, S. B.; Santos, W. L. Org. Lett. 2009, 11,
3478. See also: ref 4a.
(6) (a) Guzman-Martinez, A.; Hoveyda, A. J. Am. Chem. Soc. 2010,
132, 10634. (b) Park, J.; Lackey, H.; Ondrusek, B.; McQuade, D. J. Am.
Chem. Soc. 2011, 133, 2410.
(7) Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. Angew. Chem., Int.
Ed. 2009, 48, 5350.
(3) (a) Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314,
113. (b) Kajiwara, T.; Terabayashi, T.; Yamashita, M.; Nozaki, K.
Angew. Chem., Int. Ed. 2008, 47, 6606. (c) Okuno, Y.; Yamashita, M.;
Nozaki, K. Angew. Chem., Int. Ed. 2011, 50, 920. (d) Yamashita, M. Bull.
Chem. Soc. Jpn. 2011, 84, 983.
(4) For copper(I)-catalyzed reaction of diboron developed by our
group, see: (a) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A.
Tetrahedron Lett. 2000, 41, 6821. (b) Ito, H.; Kawakami, C.; Sawamura,
M. J. Am. Chem. Soc. 2005, 127, 16034. (c) Ito, H.; Ito, S.; Sasaki, Y.;
Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856.
(d) Ito, H.; Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M.
Angew. Chem., Int. Ed. 2008, 47, 7424. (e) Ito, H.; Sasaki, Y.; Sawamura, M.
J. Am. Chem. Soc. 2008, 130, 15774. (f) Ito, H.; Kunii, S.; Sawamura, M.
Nat. Chem. 2010, 2, 972. (g) Ito, H.; Okura, T.;Matsuura, K.;Sawamura,
M. Angew. Chem., Int. Ed. 2010, 49, 560. (h) Ito, H.; Toyoda, T.;
Sawamura, M. J. Am. Chem. Soc. 2010, 132, 5990. (i) Sasaki, Y.; Zhong,
C. M.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
(j) Zhong, C.; Kunii, S.; Kosaka, Y.; Sawamura, M.; Ito, H. J. Am. Chem.
Soc. 2010, 132, 11440. (k) Sasaki, Y.; Horita, Y.; Zhong, C. M.;
Sawamura, M.; Ito, H. Angew. Chem., Int. Ed. 2011, 50, 2778.
(8) For other selected examples of copper(I)-catalyzed reactions, see:
(a) Laitar, D.; Muller, P.; Sadighi, J. J. Am. Chem. Soc. 2005, 127, 17196.
(b) Laitar, D.; Tsui, E.; Sadighi, J. J. Am. Chem. Soc. 2006, 128, 11036.
(c) Lee, Y.; Jang, H.; Hoveyda, A. J. Am. Chem. Soc. 2009, 131, 18234.
(d) McIntosh, M.; Moore, C.; Clark, T. Org. Lett. 2010, 12, 1996.
r
10.1021/ol203413w
Published on Web 01/19/2012
2012 American Chemical Society