10.1002/chem.201804653
Chemistry - A European Journal
FULL PAPER
Soc., Dalton Trans., 1980, 220–223; c) E. Kimura, Y. Kurogi, T.
Takahashi, Inorg. Chem., 1991, 30, 4117–4121; d) H. Duan, S.
Sengupta, J. L. Petersen, N. G. Akhmedov, X. Shi, J. Am. Chem. Soc.,
2009, 131, 12100–12102; e) E. Herreo-Gómez, C. Nieto-Oberhuber, S.
López, J. Benet-Buchholz, A. M. Echavarren, Angew. Chem., Int. Ed.,
2006, 45, 5455–5459; Angew. Chem., 2006, 118, 5581–5585; f) P. de
Frémont, N. Marion, S. P. Nolan, J. Organomet. Chem., 2009, 694,
551–560; g) H. Duan, S. Sengupta, J. L. Petersen, N. G. Akhmedov, X.
Shi, J. Am. Chem. Soc., 2009, 131, 12100–12102; h) A. S. K. Hashmi,
C. Lothschütz, ChemCatChem, 2010, 2, 133–134.
Fischer, A. Laguna, M. C. Blanco, M. C. Gimeno, Angew. Chem. Int.
Ed., 2007, 46, 6184–6187; Angew. Chem., 2007, 119, 6297–6300.
[19] L. Ricard, F. Gagosz, Organometallics, 2007, 26, 4704–4707.
[20] P. de Frémont, E. D. Stevens, M. R. Fructos, M. Mar Díaz-Requejo, P.
J. Pérez, S. P. Nolan, Chem. Commun., 2006, 2045–2047.
−
[21] The identity of the counterion (NTf2 or BF4−) had minimal effect on the
spectroscopic data, and therefore only data for the complexes
containing NTf2− is presented in Table 1 and discussed in the text. Full
characterization data available in the Supporting Information.
[22] D. Zuccaccia, L. Belpassi, A. Macchioni, F. Tarantelli, Eur. J. Inorg.
Chem., 2013, 2013, 4121–4135.
[10] a) H.-N. Adams, J. Strähle, Z. Anorg. Allg. Chem., 1982, 485, 65–80; b)
H.-N. Adams, W. Hiller, J. Strähle, Z. Anorg. Allg. Chem., 1982, 485,
81–91; c) W. Conzelmann, W. Hiller, J. Strähle, G. M. Sheldrick, Z.
Anorg. Allg. Chem., 1984, 512, 169–176; d) J. Vicente, M.-T. Chicote, S.
Huertas, M. C. Ramírez de Arellano, P. G. Jones, Eur. J. Inorg. Chem.,
1998, 1998, 511–516; e) L. G. Kuz'mina, A. A. Bagatur'yants, A. V.
Churakov, J. A. K. Howard, Chem. Commun., 2001, 1394–1395; f) A. S.
K. Hashmi, J. P. Weyrauch, M. Rudolph, E. Kurpejović, Angew. Chem.
Int. Ed., 2004, 43, 6545–6547; Angew. Chem., 2004, 116, 6707–6709;
g) K. M.-C. Wong, L.-L. Hung, W. H. Lam, N. Zhu, V. W.-W. Yam, J. Am.
Chem. Soc., 2007, 129, 4350–4365; h) C. Khin, A. S. K. Hashmi, F.
Rominger, Eur. J. Inorg. Chem., 2010, 1063–1069; i) N. Savjani, D.-A.
Roşca, M. Schormann, M. Bochmann, Angew. Chem., Int. Ed., 2013,
52, 874–877; Angew. Chem., 2013, 125, 908–911; j) E. J. Fernández,
A. Laguna, J. M. López-de-Luzuriaga, M. Monge, M. Montiel, M. E.
Olmos, J. Pérez, M. Rodríguez-Castillo, Gold Bull., 2007, 40, 172–183;
k) S. Orbisaglia, B. Jacques, P. Braunstein, D. Hueber, P. Pale, A.
Blanc, P. de Frémont, Organometallics, 2013, 32, 4153–4164; l) D.-A.
Roşca, J. Fernandez-Cestau, J. Morris, J. A. Wright, M. Bochmann, Sci.
Adv., 2015, 1, e1500761; m) L. Huang, F. Rominger, M. Rudolph, A. S.
K. Hashmi, Chem. Commun., 2016, 52, 6435–6438; n) L. Huang, M.
Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016,
55, 4808–4813; Angew. Chem., 2016, 128, 4888–4893.
[23] S. Gaillard, P. Nun, A. M. Z. Slawin, S. P. Nolan, Organometallics, 2010,
29, 5402–5408.
[24] Crystallographic data for (2R,3S)-9·NTf2 (CCDC 1587865) is available
free of charge from the Cambridge Crystallographic Data Centre,
ion pairs in the unit cell – only a single pair is shown in Figure 3 for
clarity.
[25] Crystallographic data for (2R,3S)-20 (CCDC 1587862), (±)-20 (CCDC
1587863), (S)-21 (CCDC 1587861) and 22 (CCDC 1587864) is
available free of charge from the Cambridge Crystallographic Data
[26] a) A. Collado, J. Bohnenberger, M.-J. Oliva-Madrid, P. Nun, D. B.
Cordes, A. M. Z. Slawin, S. P. Nolan, Eur. J. Inorg. Chem., 2016, 2016,
4111–4122; b) S. Gaillard, A. M. Z. Slawin, A. T. Bonura, E. D. Stevens,
S. P. Nolan, Organometallics, 2010, 29, 394–402; c) P. de Frémont, R.
Singh, E. D. Stevens, J. L. Petersen, S. P Nolan, Organometallics,
2007, 26, 1376–1385; d) M. Pažický, A. Loos, M. J. Ferreira, D. Serra,
N. Vinokurov, F. Rominger, C. Jäkel, A. S. K. Hashmi, M. Limbach,
Organometallics, 2010, 29, 4448–4458.
[27] Crystallographic data for (2R,3S)-23 (CCDC 1587867) and (S)-24
(CCDC 1587866) is available free of charge from the Cambridge
[28] a) H. Clavier,S. P. Nolan, Chem. Commun., 2010, 46, 841–861; b) A.
Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano, L.
Cavallo, Eur. J. Inorg. Chem., 2009, 2009, 1759–1766; c) L. Falivene,
R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L.
Cavallo, Organometallics, 2016, 35, 2286–2293.
[11] W. Schneider, A. Bauer, A. Schier, H. Schmidbaur, Chem. Ber., 1997,
130, 1417–1422.
[12] J. Coetzee, S. Cronje, L. Dobrzanska, H. G. Raubenheimer, G. Joone,
M. J. Nell, H. C. Hoppe, Dalton Trans., 2011, 40, 1471–1483.
[13] M. A. Garcia, W. Frey, M. R. Ringenberg, M. Schwilk, R. Peters, Chem.
Commun., 2015, 51, 16806–16809.
[29] a) C. A. Tolman, Chem. Rev., 1977, 77, 313–348; b) G. Ciancaleoni, N.
Scafuri, G. Bistoni, A. Macchioni, F. Tarantelli, D. Zuccaccia, L.
Belpassi, Inorg. Chem., 2014, 53, 9907–9916; c) D. Setiawan, R.
Kalescky, E. Kraka, D. Cremer, Inorg. Chem., 2016, 55, 2332–2344.
[30] The synthesis of nickel carbonyl complexes was originally investigated,
however the reaction of Ni(CO)4 with isothioureas 1–3 led to a complex
mixture of products.
[14] a) M. Bochmann, B. Bertrand, M. R. M. Williams, Chem. Eur. J., 2018,
24, 11840–11851; b) B. Bertrand, A. Casini, Dalton Trans., 2014, 43,
4209–4219; c) W. Liu, R. Gust, Chem. Soc. Rev., 2013, 42, 755–773;
d) I. Ott, Coord. Chem. Rev., 2009, 253, 1670–1681; e) V. W.-W. Yam,
K. M.-C. Wong, Chem. Commun., 2011, 47, 11579–11592; f) R. Visbal,
M. C. Gimeno, Chem. Soc. Rev., 2014, 43, 3551–3574; g) E. E.
Langdon-Jones, S. J. A. Pope, Chem. Commun., 2014, 50, 10343–
10354.
[31] a) A. R. Chianese, X. Li, M. C. Janzen, J. W. Faller, R. H. Crabtree,
Organometallics, 2003, 22, 1663–1667; b) R. A. Kelly III, H. Clavier, S.
Giudice, N. M. Scott, E. D. Stevens, J. Bordner, I. Samardjiev, C. D.
Hoff, L. Cavallo, S. P. Nolan, Organometallics, 2008, 27, 202–210.
[32] Crystallographic data for (2S,3R)-26 (CCDC 1587868) is available free
of charge from the Cambridge Crystallographic Data Centre,
[15] D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev., 2008, 108, 3351–
3378.
[16] a) J. A. Kalow, A. G. Doyle, J. Am. Chem. Soc., 2010, 132, 3268–3269;
b) J. A. Kalow, A. G. Doyle, J. Am. Chem. Soc., 2011, 133, 16001–
16012.
[17] a) D. Weber, M. R. Gagné, Org. Lett., 2009, 11, 4962–4965; b) D.
Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G.
Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc.,
2012, 134, 9012–9019; c) Z. Lu, J. Han, G. B. Hammond, B. Xu, Org.
Lett., 2015, 17, 4534–4537.
[33] A. Gómez-Suárez, D. Gasperini, S. V. C. Vummaleti, A. Poater, L.
Cavallo, S. P. Nolan, ACS Catal., 2014, 4, 2701–2705.
[34] J.-F. Brazeau, S. Zhang, I. Colomer, B. K. Corkey, F. D. Toste, J. Am.
Chem. Soc., 2012, 134, 2742–2749.
[35] C.-F. Xu, M. Xu, L.-Q. Yang, C.-Y. Li, J. Org. Chem., 2012, 77, 3010–
3016.
[18] a) D. Gasperini, A. Collado, A. Goméz-Suárez, D. B. Cordes, A. M. Z.
Slawin, S. P. Nolan, Chem. Eur. J., 2015, 21, 5403–5412. For previous
examples of Au(I) enolate complexes, see: b) Y. Ito, M. Inouye, M.
Suginome, M. Murakami, J. Organomet. Chem., 1988, 342, C41–C44;
c) M. Murakami, M. Inouye, M. Suginome, Y. Ito, Bull. Chem. Soc. Jpn.,
1988, 61, 3649–3652; d) L. G. Kuzmina, Koord. Khim., 1994, 20, 540–
546; e) F. Mohr, L. R. Falvello, M. Laguna, Eur. J. Inorg. Chem., 2006,
833–838; f) A. S. K. Hashmi, S. Schäfer, M. Wölfle, C. Diez Gil, P.
[36] a) M. Georgy, V. Boucard, J.-M. Campagne, J. Am. Chem. Soc., 2005,
127, 14180–14181; b) M. Georgy, V. Boucard, O. Debleds, C. D. Zotto,
J.-M. Campagne, Tetrahedron, 2009, 65, 1758–1766.
[37] a) Y.-M. Wang, A. D. Lackner, F. D. Toste, Acc. Chem. Res., 2014, 47,
889–901; b) W. Zei, F. D. Toste, Chem. Soc. Rev., 2016, 45, 4567–
4589.
This article is protected by copyright. All rights reserved.