878
V. D. Pinho, Antonio C. B. Burtoloso / Tetrahedron Letters 53 (2012) 876–878
4. Daly, J. W.; McNeal, E. T.; Overman, L. E.; Ellison, D. H. J. Med. Chem. 1985, 28,
482.
5. Pinho, V. D.; Burtoloso, A. C. B. J. Org. Chem. 2011, 76, 289.
6. (S)-N-Cbz-prolinal can also be prepared in multigram quantities and in two
steps from the cheaper amino acid (S)-N-Cbz-proline. From (S)-N-Cbz-proline,
the total synthesis of indolizidine 167B is accomplished in 6 steps.
7. For the first asymmetric total synthesis of indolizidine 167B and 209D see:
Polniaszek, R. P.; Belmont, S. E. J. Org. Chem. 1990, 55, 4688.
high yielding unusual photochemical Arndt–Eistert homologation
from an unsaturated diazoketone. This strategy should be feasible
and can be easily adaptable to the concise synthesis of other indolizi-
dine alkaloids. The total syntheses of some pumiliotoxins and cast-
anospermine analogues using the present strategy will be reported
in due course.
8. For recent examples of the asymmetric synthesis of indolizidine 167B and
209D see: (a) Lazzaroni, R.; Settambolo, R. Chirality 2011, 23, 730; (b) Chou, S.-
S. P.; Chung, Y. C.; Chen, P.-A.; Chiang, S.-L.; Wu, C. J. J. Org. Chem. 2011, 76, 692;
(c) Liu, H.; Su, D.; Cheng, G.; Xu, J.; Wang, X.; Hu, Y. Org. Biomol. Chem. 2010, 8,
1899; (d) Gracia, S.; Jerpan, R.; Pellet-Rostaing, S.; Popowycz, F.; Lemaire, M.
Tetrahedron Lett. 2010, 51, 6290. and references cited therein.
9. Nukui, S.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1995, 60, 398.
10. Yu, R. T.; Lee, E. E.; Malik, G.; Rovis, T. Angew. Chem., Int. Ed. 2009, 2379.
11. Stead, D.; O’Brien, P.; Sanderson, A. Org. Lett. 2008, 10, 1409.
Acknowledgments
We thank FAPESP (Research Supporting Foundation of the State
of Sao Paulo) for financial support and a fellowship to V.D.P. We
also thank CNPq for research fellowship to A.C.B.B. and IQSC-USP
for facilities. We also would like to thank Professor Marcio Paixão
(UFSCar), Ana M. Deobald (UFSCar), Professor André Porto (IQSC-
USP) and Lenilson Coutinho (IQSC-USP) for help with the HPLC
instrument, Professor Daniel Cardoso for help with the photochem-
ical system and DQO-UFSCar for some NMR analyses.
12. Settambolo, R.; Guazzelli, G.; Lazzaroni, R. Beilstein J. Org. Chem. 2005, 2, 176.
13. See Supplementary data for details.
14. Experimental procedure for the photochemical Wolff rearrangement: A solution of
diazoketone 2 (269.0 mg, 0.9 mmol) in dry methanol (3.0 mL), in a 1 cm optical
path quartz cell, was irradiated with a Osram 150 Xenon white lamp for 4 h
under magnetic stirring (nitrogen gas evolution observed). Next, the solvent
was evaporated off in a rotary evaporator to furnish 272.0 mg (97%) of ester 1
with no need of purification. 1H NMR (200 MHz, CDCl3, mixture of rotamers) d
7.30 (br s, 5H), 5.79–5.44 (m, 1H,), 5.18 (d, 1H, J = 12.0 Hz), 5.08 (d, 1H,
J = 12.0 Hz), 4.50–4.31 (m, 1H), 3.66 (s, 3H), 3.53–3.41 (m, 2H), 3.16–2.96 (m,
2H), 2.08–1.68 (m, 4H); 13C NMR (50 MHz, CDCl3, mixture of rotamers) d 172.0,
161.2, 136.9, 134.3, 133.9, 128.3, 127.7, 122.0, 66.6, 58.5, 58.2, 51.7, 46.6, 46.3,
37.31, 32.2, 31.3, 29.6, 23.5, 23.5, 22.7; FT-IR (neat, cmꢀ1): 2954, 2927, 1737,
1701, 1452, 1411, 1353, 1270, 1189, 1170; HRMS (ESI) calcd for C17H21NNaO4
Supplementary data
Supplementary data (experimental procedures and copies of
the NMR spectra of all compounds and chiral HPLC chromatograms
of diazoketone 2 and lactam 3.) associated with this article can be
[M+Na]: 326.1368 found: 326.1360; ½a D25
ꢀ30.0 (c 4.0 CH2Cl2); Rf: 0.4 (40%
ꢁ
EtOAc/hexanes).
15. Kirmse, W. Eur. J. Org. Chem. 2002, 2193.
16. Although no example of the photochemical Wolff rearrangement applied to the
Arndt–Eistert reaction is described in the literature for an ,b-unsaturated
References and notes
a
1. (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139; (b) Michael, J. P. Nat. Prod. Rep.
2005, 22, 603; (c) Michael, J. P. Nat. Prod. Rep. 2004, 21, 625; (d) Michael, J. P.
Nat. Prod. Rep. 2003, 20, 458; (e) Michael, J. P. Nat. Prod. Rep. 2002, 19, 719; (f)
Michael, J. P. Nat. Prod. Rep. 2001, 18, 520; (g) Michael, J. P. Nat. Prod. Rep. 2000,
17, 579.
2. Most publications describe indolizidines 167B and 209D as natural. However,
according to Daly’s recent reviews, the two isolated natural alkaloids (proposed
tentatively to be indolizidines 167B and 209D) were found to be 3,5-
disubstituted pyrrolizidines and were, therefore, tabulated as indolizidines
167F and 209K in the appendix. The code names 167B and 209D are
maintained for the synthetic indolizidines, although they have not yet been
detected in nature. Please see: (a) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J.
Nat. Prod. 2005, 68, 1556; (b) Pelletier, S. W. Alkaloids: Chemical and Biological
Perspectives; Elsevier Science Ltd: Oxford, 1999.
diazoketone, a single example is described for the thermal rearrangement by
Brueckner. However, the 2 diazoketones employed in this example are simple
ones, containing no epimerizable stereocenters or heteroatoms in the chain.
For this single example, see: (a) Kapferer, T.; Brueckner, R.; Herzig, A.; Koenig,
W. A. Chem. Eur. J. 2005, 11, 2154; (b) Kapferer, T.; Brueckner, R. Eur. J. Org.
Chem. 2006, 9, 2119.
17. Miles, N. J.; Sammes, P. G.; Kennewell, P. D.; Westwood, R. J. Chem. Soc., Perkin
Trans. 1 1985, 2299.
18. Park, S. H.; Kang, H. J.; Ko, S.; Park, S.; Chang, S. Tetrahedron: Asymmetry 2001,
12, 2621.
19. The highly stereoselective reduction of the iminium ion in indolizidine
skeleton is reported by several groups. For examples see Ref.9 and references
cited therein.
3. Aronstam, R. S.; Daly, J. W.; Spande, T. F.; Narayanan, T. K.; Albuquerque, E. X.
Neurochem. Res. 1986, 11, 1227.