of their optical rotations.10 The absolute stereochemistry
established that the (R)-tol-BINAP ligand favoured the
cleavage of the bond a located on the right in the drawings
of eqn (3) and (4), irrespective of the stereochemical arrange-
ment at the 3-position.
Notes and references
z General procedure: A mixture containing [Rh(OH)(cod)]2 (2.3 mg,
5.0 mmol, 5.0 mol%), DPPB (4.7 mg, 11 mmol, 11 mol%), K3PO4
(23.3 mg, 0.11 mmol) and 1a (37.9 mg, 0.10 mmol) in 1,4-dioxane
(0.50 ml) was stirred at 120 1C for 15 h. After being cooled to room
temperature, the reaction mixture was diluted with H2O and extracted
with AcOEt (three times). The combined organic phase was washed
with H2O and brine, dried over MgSO4 and evaporated. The residue
was purified by preparative thin-layer chromatography on silica gel
(hexane : AcOEt = 10 : 1) to afford 2a (28.7 mg, 0.096 mmol, 96%).
1 (a) M. E. Van Der Boom and D. Milstein, Chem. Rev., 2003,
103, 1759; (b) C.-H. Jun, Chem. Soc. Rev., 2004, 33, 610;
(c) T. Satoh and M. Miura, Top. Organomet. Chem., 2005, 14, 1;
(d) T. Kondo and T. Mitsudo, Chem. Lett., 2005, 1462; (e) T. Seiser
and N. Cramer, Org. Biomol. Chem., 2009, 7, 2835;
(f) M. Murakami and T. Matsuda, Chem. Commun., 2011, 47, 1100.
2 (a) H. Nemoto, J. Miyata, M. Yoshida, N. Raku and
K. Fukumoto, J. Org. Chem., 1997, 62, 7850; (b) P. Kocovsky,
V. Dunn, A. Gogoll and V. Langer, J. Org. Chem., 1999, 64, 101;
(c) T. Nishimura, K. Ohe and S. Uemura, J. Am. Chem. Soc., 1999,
121, 2645; (d) T. Nishimura and S. Uemura, J. Am. Chem. Soc.,
1999, 121, 11010; (e) L. S. Hegedus and P. B. Ranslow, Synthesis,
2000, 953; (f) R. C. Larock and C. K. Reddy, Org. Lett., 2000,
2, 3325; (g) M. Yoshida, K. Sugimoto and M. Ihara, Tetrahedron
Lett., 2000, 41, 5089; (h) B. M. Trost and T. Yasukata, J. Am.
Chem. Soc., 2001, 123, 7162; (i) S. G. Sethofer, S. T. Staben,
O. Y. Hung and F. D. Toste, Org. Lett., 2008, 10, 4315;
(j) T. Matsuda, M. Shigeno and M. Murakami, Org. Lett., 2008,
10, 5219; (k) A. Schweinitz, A. Chtchemelinine and A. Orellana,
Org. Lett., 2011, 13, 232.
ð3Þ
3 (a) T. Matsuda, M. Makino and M. Murakami, Org. Lett., 2004,
6, 1257; (b) T. Seiser, O. A. Roth and N. Cramer, Angew. Chem.,
Int. Ed., 2009, 48, 6320; (c) M. Shigeno, T. Yamamoto and
M. Murakami, Chem.–Eur. J., 2009, 15, 12929; (d) T. Seiser
and N. Cramer, J. Am. Chem. Soc., 2010, 132, 5340; (e) T. Seiser
and N. Cramer, Chem.–Eur. J., 2010, 16, 3383.
4 For reviews on reactions of cyclobutanes, see: (a) E. Lee-Ruff and
G. Mladenova, Chem. Rev., 2003, 103, 1449; (b) J. C. Namyslo and
D. E. Kaufmann, Chem. Rev., 2003, 103, 1485; (c) T. Seiser,
T. Saget, D. N. Tran and N. Cramer, Angew. Chem., Int. Ed.,
2011, 50, 7740.
5 For other rhodium-catalysed reactions involving activation of a
carbon–carbon bond, see: (a) C.-H. Jun and H. Lee, J. Am. Chem.
Soc., 1999, 121, 880; (b) M. Murakami, T. Itahashi and Y. Ito,
J. Am. Chem. Soc., 2002, 124, 13976; (c) A. M. Dreis and
C. J. Douglas, J. Am. Chem. Soc., 2009, 131, 412.
6 The results with other ligands at 100 1C for 13 h: PPh3 (o10%),
P(t-Bu)3 (o10%), IPr (0%), DPPP (23%), BINAP (30%), DPPB
(53%).
ð4Þ
In conclusion, we have developed a rhodium-catalysed
reaction of 3,3-disubstituted 1-(2-haloaryl)cyclobutanols,
which provides 3,3-disubstituted a-tetralones having
a
quaternary carbon centre in an enantiomerically enriched
form. We failed to find such chiral a-tetralones by structural
search on electronic databases, which was probably owing to
the paucity of an appropriate synthetic method. Asymmetric
conjugate addition of carbon nucleophiles to a,b-unsaturated
carbonyl compounds is an authentic method for introducing a
chiral centre at the position b to a carbonyl group. However,
a-tetralones bearing a chiral quaternary carbon at the
3-position are inaccessible via conjugate addition to dehydro-
tetralone because 1-naphthol is the more stable tautomer of
dehydrotetralone and unreactive as the conjugate acceptor.
Therefore, the rhodium-catalysed reaction we have developed
would serve as a useful synthetic method for such chiral
a-tetralone derivatives.
7 Although the use of palladium complexes was also examined in the
reaction of 1a under various reaction conditions, tetralone 2a was
produced in less than 30% yield together with unidentified byproducts.
8 For rhodium-catalysed cross-coupling reactions which would
involve a Rh(I)–Rh(III) redox process, see: (a) R. C. Larock,
K. Narayanan and S. S. Hershberger, J. Org. Chem., 1983,
48, 4377; (b) P. A. Evans and D. Uraguchi, J. Am. Chem. Soc.,
2003, 125, 7158; (c) K. Ueura, T. Satoh and M. Miura, Org. Lett.,
2005, 7, 2229; (d) H. Yasui, K. Mizutani, H. Yorimitsu and
K. Oshima, Tetrahedron, 2006, 62, 1410; (e) M. L. Kantam,
S. Roy, M. Roy, B. Sreedhar, B. M. Choudary and R. L. De,
J. Mol. Catal. A: Chem., 2007, 273, 26; (f) L. Zhang and J. Wu,
Adv. Synth. Catal., 2008, 350, 2409; (g) J.-Y. Yu and R. Kuwano,
Angew. Chem., Int. Ed., 2009, 48, 7217.
9 For examples of b-carbon elimination of organorhodium(III)
species, see: (a) M. A. Huffman and L. S. Liebeskind, J. Am.
Chem. Soc., 1993, 115, 4895; (b) M. Murakami, K. Takahashi,
H. Amii and Y. Ito, J. Am. Chem. Soc., 1997, 119, 9307;
(c) P. A. Wender, A. G. Correa, Y. Sato and R. Sun, J. Am. Chem.
Soc., 2000, 122, 7815; (d) T. Matsuda, T. Tsuboi and M. Murakami,
This work was supported in part by The Asahi Glass
Foundation and a Grant-in-Aid for Scientific Research on
Innovative Areas ‘‘Molecular Activation Directed toward
Straightforward Synthesis’’ from The Ministry of Education,
Culture, Sports, Science and Technology, Japan.
J. Am. Chem. Soc., 2007, 129, 12596; (e) D. Cre
C. Aıssa, Angew. Chem., Int. Ed., 2010, 49, 620.
´
pin, J. Dawick and
¨
10 T. Fujita, K. Obata, S. Kuwahara, A. Nakahashi, K. Monde,
J. Decatur and N. Harada, Eur. J. Org. Chem., 2010, 6372.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1973–1975 1975