Cu-Catalyzed Synthesis of 4-Aryl-1H-1,2,3-triazoles
Supporting Information (see footnote on the first page of this arti-
azide has been reported. The starting substrates 1 were eas-
ily obtained from aromatic aldehydes.[21] Further studies to
prove the proposed mechanism are expected.
1
cle): Copies of the H and 13C NMR spectra.
Acknowledgments
The present work was supported by the National Natural Science
Foundation of China (No. 30873153), the Key Projects of Shanghai
in Biomedicine (No. 08431902700), and the Scientific Research
Foundation of the State Education Ministry for Returned Overseas
Chinese Scholars. We would also like to thank the Center for In-
strumental Analysis, Tongji University, China.
Experimental Section
General Considerations: 1H NMR spectra were recorded with an
AM-500 spectrometer in CDCl3 with SiMe4 as the internal stan-
dard. Commercially obtained reagents were used without further
purification. DMSO (AR, water Յ 0.2%) was used as received.
Column chromatography was carried out with 300–400 mesh silica
gel.
[1] a) A. R. Katritzky, Y. Zhang, S. K. Singh, Heterocycles 2003,
60, 1225; b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi,
Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064; c)
N. R. Candeias, L. C. Branco, P. M. P. Gois, C. A. M. Afonso,
A. F. Trindade, Chem. Rev. 2009, 109, 2703; d) S. Díez-
González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
[2] a) Y. M. Chabre, R. Roy, Curr. Top. Med. Chem. 2008, 8, 1237;
b) M. Colombo, I. Peretto, Drug Discovery Today 2008, 13,
677; c) R. Hanselmann, G. E. Job, G. Johnson, R. L. Lou, J. G.
Martynow, M. M. Reeve, Org. Process Res. Dev. 2010, 14, 152;
d) R. Moumne, V. Larue, B. Seijo, T. Lecourt, L. Micouin, C.
Tisne, Org. Biomol. Chem. 2010, 8, 1154.
[3] a) M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barba-
chyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C.
Grega, J. B. Hester, D. K. Hutchinson, J. Morris, R. D. Re-
ischer, D. Stper, B. H. Yagi, J. Med. Chem. 2000, 43, 953; b) W.
Li, Y. Xia, Z. Fan, F. Qu, Q. Wu, P. Ling, Tetrahedron Lett.
2008, 49, 2804.
General Procedure for the Synthesis of 4-Aryl-1H-1,2,3-triazoles (2):
A reaction tube was charged with 2-aryl-1,1-dibromoalkenes 1
(0.2 mmol), NaN3 (26 mg, 0.4 mmol), CuI (0.04 mmol), Na ascorb-
ate (0.10 mmol), K2CO3 (0.4 mmol), and DMSO (2 mL). The mix-
ture was heated to 120 °C with stirring for 12 h. The mixture was
allowed to cool to room temperature and was quenched with H2O
(10 mL). The mixture was extracted with EtOAc (3ϫ10 mL), and
the organic layer was washed with brine (5 mL). The combined
organic layers were dried with Na2SO4, concentrated under reduced
pressure, and dried under high vacuum. Purification by column
chromatography on silica gel (EtOAc/hexane, 2:1) afforded 4-aryl-
1H-1,2,3-triazole 2.
4-(4-Isopropylphenyl)-1H-1,2,3-triazole (2c): Yield: 79%. Slightly
1
yellow oil. H NMR (500 MHz, CDCl3): δ = 7.94 (s, 1 H), 7.74 (d,
J = 8.2 Hz, 2 H), 7.32 (d, J = 8.2 Hz, 2 H), 2.98–2.93 (m, 1 H),
1.29 (d, J = 6.9 Hz, 6 H) ppm. 13C NMR (125 MHz, CDCl3): δ =
149.7, 146.9, 129.2, 127.1, 126.2, 126.1, 34.0, 23.8 ppm. ESI-MS:
m/z (%) = 187 ([M]+, 100). HRMS: calcd. for C11H13N3 [M + H]+
187.1111; found 187.1110.
[4] a) R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E.
De Clercq, C. F. Perno, A. Karlsson, J. Balzarini, M. J. Camar-
asa, J. Med. Chem. 1994, 37, 4185; b) F. da Silva, M. C. B. V.
de Souza, I. I. P. Frugulhetti, H. C. Castro, O. S. L. de Souza,
T. M. L. de Souza, D. Q. Rodrigues, A. M. T. Souza, P. A. Ab-
reu, F. Passamani, C. R. Rodrigues, V. F. Ferreira, Eur. J. Med.
Chem. 2009, 44, 373.
4-(3,4-Dimethoxyphenyl)-1H-1,2,3-triazole (2f): Yield: 80%. Yellow
1
oil. H NMR (400 MHz, CDCl3): δ = 3.92 (s, 3 H), 3.96 (s, 3 H),
[5] a) L. S. Kallander, Q. Lu, W. Chen, T. Tomaszek, G. Yang, D.
Tew, T. D. Meek, G. A. Hofmann, C. K. Schulz-Pritchard,
W. W. Smith, C. A. Janson, M. D. Ryan, G. Zhang, K. O.
Johanson, R. B. Kirkpatrick, T. F. Ho, P. D. Fisher, M. R. Mat-
tern, R. K. Johnson, M. J. Hansbury, J. D. Winkler, K. W.
Ward, D. F. Veber, S. K. Thompson, J. Med. Chem. 2005, 48,
5644; b) U. F. Rohrig, O. L. Awad, O. A. Grosdidier, P. Larrieu,
V. Stroobant, D. Colau, V. Cerundolo, A. J. G. Simpson, P. Vo-
gel, B. J. Van den Eynde, V. Zoete, O. Michielin, J. Med. Chem.
2010, 53, 1172.
[6] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless,
Angew. Chem. 2002, 114, 2708; Angew. Chem. Int. Ed. 2002,
41, 2596; b) P. Wu, A. K. Feldman, C. J. Hawker, A. Scheel, B.
Voit, J. Pyun, K. B. Sharpless, V. V. Fokin, Angew. Chem. Int.
Ed. 2004, 43, 4018; c) P. Wu, A. K. Feldman, C. J. Hawker, A.
Scheel, B. Voit, J. Pyun, K. B. Sharpless, V. V. Fokin, Angew.
Chem. 2004, 116, 4018; Angew. Chem. Int. Ed. 2004, 43, 3928;
d) E. J. Yoo, M. Ahlquist, S. H. Kim, I. Bae, V. V. Fokin, K. B.
Sharpless, S. Chang, Angew. Chem. Int. Ed. 2007, 46, 1760; e)
Yoo, E. J. M. Ahlquist, S. H. Kim, I. Bae, V. V. Fokin, K. B.
Sharpless, S. Chang, Angew. Chem. 2007, 119, 1760; Angew.
Chem. Int. Ed. 2007, 46, 1730; f) D. Kumar, V. B. Reddy, R. S.
Varma, Tetrahedron Lett. 2009, 50, 2065.
6.93 (d, J = 8.5 Hz, 1 H), 7.34–7.42 (m, 2 H), 7.85 (br. s, 1 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 150.2, 148.8, 148.5, 135.8, 128.2,
118.8, 111.4, 109.2, 56.0 ppm. ESI-MS: m/z (%) = 205 (100) [M]+.
HRMS: calcd. for C10H12N3O2 [M + H]+ 206.0930; found
206.0929.
Synthesis of 5-Bromo-4-p-tolyl-1H-1,2,3-triazole (4): A reaction
tube was charged with 1-(bromoethynyl)-4-methylbenzene (3)
(0.2 mmol), NaN3 (26 mg, 0.4 mmol), Pd(PPh3)4 (0.04 mmol), and
DMSO (2 mL). The mixture was heated to 120 °C with stirring for
12 h. The mixture was allowed to cool to room temperature and
was quenched with H2O (10 mL). The mixture was extracted with
EtOAc (3ϫ10 mL), and the organic layer was washed with brine
(5 mL). The combined organic layers were dried with Na2SO4, con-
centrated under reduced pressure, and dried under high vacuum.
Purification by column chromatography on silica (EtOAc/hexane,
2:1) afforded 4.
Synthesis of 1,4-Di-p-tolyl-1H-1,2,3-triazole (6): A reaction tube
was charged with dibromoolefin 1a (55 mg, 0.2 mmol), NaN3
(26 mg, 0.4 mmol), CuI (0.04 mmol), Na ascorbate (20 mg,
0.10 mmol), K2CO3 (58 mg, 0.4 mmol), and DMSO (2 mL). The
mixture was heated to 120 °C with stirring for 12 h. The mixture
was allowed to cool to room temperature and was quenched with
H2O (10 mL). The mixture was extracted with EtOAc (3ϫ10 mL),
and the organic layer was washed with brine (5 mL). The combined
organic layers were dried with Na2SO4, concentrated under reduced
pressure, and dried under high vacuum. Purification by column
chromatography on silica gel (EtOAc/hexane, 2:1) afforded 6.
[7] a) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem.
2002, 67, 3057; b) V. V. Rostovtsev, L. G. Green, V. V. Fokin,
K. B. Sharpless, Angew. Chem. 2002, 114, 2708; Angew. Chem.
Int. Ed. 2002, 41, 2596; c) F. Fazio, M. C. Bryan, O. Blixt, J. C.
Paulson, C. H. Wong, J. Am. Chem. Soc. 2002, 124, 14397; d)
Q. Wang, R. C. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless,
M. G. Finn, J. Am. Chem. Soc. 2003, 125, 3192; e) S. Löber, P.
Rodriguez-Loaiza, P. Gmeiner, Org. Lett. 2003, 5, 1753; f) F.
Eur. J. Org. Chem. 2012, 424–428
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
427