Journal of the American Chemical Society
Communication
to yield the corresponding cyclohexylamine derivatives under
mild conditions. In these reactions, the borane mediates uptake
of 4 equiv of H2, terminating with a final FLP activation of H2
affording the cyclohexylammonium salts. These results
represent the first stoichiometric, homogeneous, metal-free
hydrogenations of aromatic rings. We are actively studying a
broadening range of substrates for arene hydrogenations and
the application of this new methodology in targeted syntheses.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental, computational, and crystallographic data are
deposited. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Figure 2. Optimized structures, energies (in parentheses), and free
enthalpies G (298K) are relative to FLP + H2 (all data are in kcal/mol)
for the first step of the reaction mechanism. Computations refer to the
PWP95-D3/def2-TZVPP//TPSS-D3/def-TZVP level of theory (for
details see Supporting Information).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
D.W.S. gratefully acknowledges the financial support of NSERC
of Canada, the award of a Canada Research Chair and a Killam
Research Fellowship. T.M. is grateful for the support of an
NSERC Scholarship.
The H−H distance in the TS structure is about 0.97 Å,
significantly longer than that seen for P/B based FLPs (0.78−
0.8 Å) indicating a somewhat ’later’ TS. The corresponding H−
H and C−H covalent Wiberg bond orders are 0.33 and 0.41 Å,
respectively, while the B−H bond order is 0.63 Å, indicating
approximately half-broken and half-formed bonds in the TS.
The transient intermediate product (Figure 2, CH-intermedi-
ate) of the reaction is an ion pair of [tBuNHC6H6][HB-
(C6F5)3] showing a completely rehybridized carbon atom in the
para-position and an almost planar NHRC unit in the cation.
This species has similar energy and free enthalpy to the vdW-
complex. While the anticipated complexity of subsequent
hydrogenation steps to 2 has limited further computations, it is
clear that access to the arene−B(C6F5)3 vdW-complex is key in
initiating the arene reduction.
REFERENCES
■
(1) Vries, J. G. d.; Elsevier, C. J. The Handbook of Homogeneous
Hydrogenation; Wiley-VCH: Weinheim, 2007.
(2) Spindler, F.; Blaser, H.-U.; Vries, J. G. d., Elsevier, C. J., Eds.;
Wiley-VCH: Weinheim, 2007; p 1193.
(3) (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J.
Chem. Soc., A 1966, 1711. (b) Mague, J. T.; Wilkinson, G. J. Chem. Soc.
A 1966, 1736. (c) Evans, D.; Osborn, J. A.; Jardine, F. H.; Wilkinson,
G. Nature 1965, 208, 1203.
(4) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals; 2nd ed.; John Wiley & Sons: New York, 1994.
(5) Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.;
Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856.
(6) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.;
Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946.
This view of the mechanism is consistent with the
observation of species 1 as the initial product of hydrogenation
and the subsequent thermal access to the arene reduced species
2 (Scheme 2). It is noteworthy that even under prolonged
(7) (a) Visciglio, V. M.; Clark, J. R.; Nguyen, M. T.; Mulford, D. R.;
Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1997, 119, 3490.
(b) Rothwell, I. P. Chem. Commun. 1997, 1331. (c) Profilet, R. D.;
Rothwell, A. P.; Rothwell, I. P. J. Chem. Soc., Chem. Commun. 1993, 42.
(d) Steffey, B. D.; Rothwell, I. P. J. Chem. Soc., Chem. Commun. 1990,
213. (e) Steffey, B. D.; Chesnut, R. W.; Kerschner, J. L.; Pellechia, P. J.;
Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1989, 111, 378.
(8) (a) Chatterjee, M.; Sato, M.; Kawanami, H.; Ishizaka, T.;
Yokoyama, T.; Suzuki, T. Appl. Catal., A 2011, 396, 186. (b) Mink, G.;
Horvath, L. React. Kinet. Catal. Lett. 1998, 65, 59. (c) Pitara, E. L.;
N’Zemba, B.; Barbier, J.; Barbot, F. J. Mol. Catal. A: Chem. 1996, 106,
235. (d) Narayanan, S.; Sreekanth, G. React. Kinet. Catal. Lett. 1993,
51, 449. (e) Sokol’skii, D. V.; Ualikhanova, A.; Temirbulatova, A. E.
React. Kinet. Catal. Lett. 1982, 20, 35. (f) Ikedate, K.; Suzuki, S. Bull.
Chem. Soc. Jpn. 1971, 44, 325. (g) Echigoya, E.; Hagiwara, H.; Sakurai,
A. Bull. Chem. Soc. Jpn. 1966, 39, 2527. (h) Hagihara, H.; Echigoya, E.
Bull. Chem. Soc. Jpn. 1965, 38, 2094.
Scheme 2. Proposed Reaction Pathways to Anilinium and
Cyclohexylammonium Salts
heating of the more basic amine iPr2NPh with B(C6F5)3 under
H2 yields only the salt [iPr2NHPh][HB(C6F5)3] 13. The nature
of this species was confirmed spectroscopically and crystallo-
graphically (see Supporting Information). This suggests that
the greater basicity of the N center in iPr2NPh both facilitates
and stabilizes 13 relative to the corresponding FLP, thus,
inhibiting access to the corresponding arene−borane vdW
complex and subsequent arene reduction.
(9) Yalpani, M.; Lunow, T.; Koester, R. Chem. Ber. 1989, 122, 687.
(10) Yalpani, M.; Koester, R. Chem. Ber. 1990, 123, 719.
(11) (a) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, ,
1880. (b) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W.
Science 2006, 314, 1124.
In summary, we have demonstrated that N-phenyl amines are
reduced under H2 in the presence of an equivalent of B(C6F5)3
(12) (a) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49,
46. (b) Stephan, D. W. Chem. Commun. 2010, 46, 8526. (c) Stephan,
4090
dx.doi.org/10.1021/ja300228a | J. Am. Chem. Soc. 2012, 134, 4088−4091