1754
J.-J. Zhuang et al. / Tetrahedron 68 (2012) 1750e1755
(400 MHz, CDCl3)
d
1.26e1.58 (m, 6H, CH(CH2)3CH2OH), 2.57 (dd,
7.0 Hz,1H, H-2); 13C NMR (100 MHz, D2O)
d 25.9, 27.2, 30.7, 55.2, 63.1,
J¼7.2, 9.5 Hz, 1H, CHCH2NBn), 2.78e2.82 (m, 1H, CHCHNBn), 3.11
(dd, J¼5.7, 9.5 Hz, 1H, CHCH2NBn ), 3.42 (d, J¼12.9 Hz, 1H, PhCH2N),
3.56 (t, J¼6.4 Hz, 2H, CH2OH), 3.69 (dd, J¼5.1, 5.1 Hz,1H, CHCHOBn),
3.92 (ddd, J¼5.1, 5.7, 7.2 Hz, 1H, CH2CHOBn), 3.95 (d, J¼12.9 Hz, 1H,
PhCH2N), 4.48 (d, J¼12.0 Hz, 1H, PhCH2O), 4.53 (d, J¼11.8 Hz, 2H,
PhCH2O), 4.56 (d, J¼11.8 Hz, 1H, PhCH2O), 4.71 (d, J¼12.0 Hz, 1H,
PhCH2O), 7.21e7.33 (m, 15H, Ar-H); 13C NMR (100 MHz, CDCl3)
69.2, 69.7, 77.4; MS (ESI): m/z 158 (MþHþ, 100).
Acknowledgements
The authors are grateful to the NSF of China (20672089;
20832005), the NFFTBS (No. J1030415), and the National Basic Re-
search Program (973 Program) of China (Grant No. 2010CB833200).
d
21.5, 32.4, 33.0, 56.1, 59.6, 62.8, 67.9, 71.7, 71.9, 76.3, 81.4, 126.9,
127.6 (2C), 127.7, 128.0, 128.2, 128.3 (2C), 128.8, 138.4, 138.6, 139.3;
MS (ESI): m/z 446 (MþHþ, 100). Anal. Calcd for C29H35NO3: C, 78.17;
H, 7.92. Found: C, 77.79; H, 8.10.
Supplementary data
Supplementary data (1H and 13C NMR spectra of compounds 2,
6, 9a, 11, 19, 20, and 21; NOESY spectra of compounds 9a and 19).
Supplementary data related to this article can be found online at
4.1.6. (1S,2R,8aS)-1,2-Bis(benzyloxy)-octahydroindolizine
(21). To
a stirring solution of compound 20 (500 mg, 1.12 mmol) in CH2Cl2
(10 mL) at 0 ꢁC were added Et3N (0.20 mL, 1.34 mmol) and meth-
ylsulfonyl chloride (0.10 mL, 1.34 mmol). The mixture was stirred
for 3 h. To the resulting mixture was added 10 mL of saturated
NaHCO3 solution. The aqueous layer was extracted with CH2Cl2
(2ꢂ10 mL). The combined organic phases were washed with brine
(10 mL), dried over MgSO4, filtered, and concentrated in vacuo to
give crude product, which was dissolved in a solution of 5%
CF3CO2H in MeOH (10 mL). To the resulting solution was added
10% Pd/C (300 mg). The reaction mixture was stirred under 5 atm
of H2 at room temperature for 24 h. The catalyst was filtered off
through Celite, and the solvent was removed in vacuo. The residue
was purified by flash column chromatography (EtOAc/PE¼1/6) to
References and notes
1. For two recent reviews on indolizidine alkaloids, see: (a) Michael, J. P. Nat. Prod.
Rep. 2008, 25, 139; (b) Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
2. For a review on the therapeutic applications of polyhydroxylated alkaloids, see:
Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Phyto-
chemistry 2001, 56, 265.
3. Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbein, A. D. Biochemistry 1990, 29,1886.
4. Brandi, A.; Cicchi, S.; Cordero, F. M.; Frignoli, R.; Goti, A.; Picasso, S.; Vogel, P. J.
Org. Chem. 1995, 60, 6806.
5. (a) Harris, T. M.; Harris, C. M.; Hill, J. E.; Ungemach, F. S.; Broquist, H. P.;
Wickwire, B. M. J. Org. Chem. 1987, 52, 3094; (b) Harris, C. M.; Campbell, B. C.;
Molyneux, R. J.; Harris, T. M. Tetrahedron Lett. 1988, 29, 4815.
give compound 21 (306 mg, yield: 81%) as a white solid. Mp
20
6. Haraguchi, M.; Gorniak, S. L.; Ikeda, K.; Minami, Y.; Kato, A.; Watson, A. A.;
Nash, R. J.; Molyneux, R. J.; Asano, N. J. Agric. Food Chem. 2003, 51, 4995.
7. Guengerich, F. P.; DiMari, S. J.; Broquist, H. P. J. Am. Chem. Soc. 1973, 95, 2055.
8. For reviews, see: (a) Olden, K.; Breton, P.; Grzegorzewski, K.; Yasuda, Y.; Gause,
B. L.; Oredipe, O. A.; Newton, S. A.; White, S. L. Pharmacol. Ther. 1991, 50, 285; (b)
Dorling, P. R.; Colegate, S. M.; Huxtable, C. R. Toxicon 1983, 3, 93.
9. For two recent reviews on the total syntheses of (ꢀ)-swainsonine and its ste-
reoisomers, see: (a) Nie, L.; Ba, H.; Haji, A. Chinese J. Org. Chem. 2009, 29, 1354;
(b) Pyne, S. Curr. Org. Synth. 2005, 2, 39.
10. Michalik, A.; Hollinshead, J.; Jones, L.; Fleet, G. W. J.; Yu, C.-Y.; Hu, X.-G.; van
Well, R.; Horne, G.; Wilson, F. X.; Kato, A.; Jenkinson, S. F.; Nash, R. J. Phytochem.
Lett. 2010, 3, 136.
11. For the asymmetric synthesis of the unnatural enantiomer of steviamine and C-5
epimer, see: Hu, X.-G.; Bartholomew, B.; Nash, R. J.; Wilson, F. X.; Fleet, G. W. J.;
Nakagawa, S.; Kato, A.; Jia, Y.-M.; van Well, R.; Yu, C.-Y. Org. Lett. 2010, 12, 2562.
12. For two recent syntheses of lentiginosine, see: (a) Liu, S.-W.; Hsu, H.-C.; Chang,
C.-H.; Tsai, H.-H. G.; Hou, D.-R. Eur. J. Org. Chem. 2010, 4771; (b) Cui, L.; Zhang,
L.-M. Sci. China Chem. 2010, 53, 113.
43e46 ꢁC (EtOAc/PE); [
a
]
ꢀ60.0 (c 0.95, CHCl3); IR (film): 3029,
D
2932, 2853, 1453, 1321, 1147 cmꢀ1
1.15e1.26 (m, 2H, H-7, H-8 ), 1.41e1.48 (m, 1H, H-6), 1.60e1.63
(m, 1H, H-6), 1.75e1.78 (m, 1H, H-7), 1.98e2.18 (m, 1H, H-8 ),
2.04e2.10 (m, 1H, H-5
), 2.15e2.20 (m, 1H, H-8a), 2.35 (dd, J¼5.5,
9.6 Hz, 1H, H-3 ), 2.94e2.98 (m, 1H, H-5
), 3.39 (dd, J¼6.6, 9.6 Hz,
1H, H-3
;
1H NMR (500 MHz, CDCl3)
d
b
a
a
a
b
b
), 3.51 (dd, J¼7.1, 8.4 Hz, 1H, H-1), 4.01 (ddd, J¼5.5, 6.6,
7.1 Hz, 1H, H-2), 4.52 (d, J¼11.8 Hz, 1H, OCH2Ph), 4.55 (d, J¼11.8 Hz,
1H, OCH2Ph), 4.59 (d, J¼11.8 Hz, 1H, OCH2Ph), 4.75 (d, J¼11.8 Hz,
1H, OCH2Ph), 7.25e7.36 (m, 10H, Ar-H); 13C NMR (125 MHz, CDCl3)
d
23.8, 25.4, 29.4, 53.1, 60.3, 66.2, 71.9, 72.5, 73.7, 82.3, 127.5, 127.6,
127.9, 128.2 (2C), 128.3, 138.3, 138.4; MS (ESI): m/z 338 (MþHþ,
100). Anal. Calcd for C22H27NO2: C, 78.30; H, 8.06. Found: C, 77.91;
H, 8.10.
13. (a) Muramatsu, T.; Yamashita, S.; Nakamura, Y.; Suzuki, M.; Mase, N.; Yoda, H.;
Takabe, K. Tetrahedron Lett. 2007, 48, 8956; (b) Sawada, D.; Takahashi, H.; Ike-
gami, S. Tetrahedron Lett. 2003, 44, 3085; (c) Lim, S. H.; Ma, S.; Beak, P. J. Org.
Chem. 2001, 66, 9056; (d) Rasmussen, M. O.; Delair, P.; Greene, A. E. J. Org. Chem.
2001, 66, 5438; (e) Heitz, M.-P.; Overman, L. E. J. Org. Chem. 1989, 54, 2591.
14. For a recent example, see: Chen, J.; Huang, P.-Q.; Queneau, Y. J. Org. Chem. 2009,
74, 7457.
4.1.7. (ꢀ)-2-epi-Lentiginosine (2). To a stirring solution of com-
pound 20 (500 mg,1.12 mmol) in CH2Cl2 (10 mL) at 0 ꢁC were added
successively Et3N (0.20 mL,1.34 mmol) and methylsulfonyl chloride
(0.10 mL, 1.34 mmol). The mixture was stirred for 3 h. To the
resulting mixture was added 10 mL of saturated NaHCO3 solution.
The aqueous layer was extracted with CH2Cl2 (2ꢂ10 mL). The com-
bined organic phases were washed with brine (10 mL), dried over
MgSO4, filtered, and concentrated in vacuo to give the crude product
5, which was dissolved in a solution of 5% CF3CO2H in MeOH (10 mL).
To the resulting solution was added 10% Pd/C (500 mg). The reaction
mixture was stirred under 5 atm of H2 at room temperature for 24 h.
The catalyst was filtered off through Celite and the solvent was re-
moved in vacuo. The residue was dissolved in deionized water
(10 mL) and passed through a column of ion-exchange resin (Dowex
1ꢂ8-100, OH form) eluting with deionized water (15 mL). The eluent
15. For a recent example, see: Liu, X.-K.; Qiu, S.; Xiang, Y.-G.; Ruan, Y.-P.; Zheng, X.;
Huang, P.-Q. J. Org. Chem. 2011, 76, 4952.
16. (a) For a review, see: Behr, J.-B.; Plantier-Royon, R. Recent Res. Dev. Org. Chem. 2006,
10, 23; (b) Cipolla, L.; La Feria, B.; Peri, F.; Nicotra, F. Chem. Commun. 2000,1289; (c)
Cipolla, L.; Nicotra, F.; Pangrazio, C. Gazz. Chim. Ital. 1996, 126, 663; (d) Cipolla, L.;
Lay, L.; Nicotra, F.; Pangrazio, C.; Panza, L. Tetrahedron 1995, 51, 4679; (e) Yoda, H.;
Nakajima, T.; Yamazaki, H.; Takabe, K. Heterocycles 1995, 41, 2423; (f) Lay, L.; Nic-
otra, F.; Paganini, A.; Pangrazio, C.; Panza, L. Tetrahedron Lett. 1993, 34, 4555; (g)
Carcano, M.; Nicotra, F.; Panza, L.; Russo, G. J. Chem. Soc., Chem. Commun.1989, 297;
(h) Nagai, M.; Gaudino, J.; Wilcox, C. S. Synthesis 1992,163; (i) Guerrier, L.; Royer, J.;
Grierson, D. S.; Husson, H.-P. J. Am. Soc. Chem. 1983, 105, 7754.
17. Cohen, N.; Banner, R. L.; Lopresti, R. J.; Wong, F.; Rosenberger, M.; Liu, Y. T.;
Thom, E.; Liebman, A. A. J. Am. Chem. Soc. 1983, 105, 3661.
18. Smith, A. B., III; Fox, R. J.; Vanecko, J. A. Org. Lett. 2005, 7, 3099.
19. For a review on the synthesis of chiral piperidines and pyrrolidines via ox-
azolidines, see: Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383.
20. For recent reviews on chiral amine synthesis, see: (a) Nugent, T. C.; El-Shazly,
M. Adv. Synth. Catal. 2010, 352, 753; (b) Friestad, G. K.; Mathies, A. K. Tetrahe-
dron 2007, 63, 2541.
21. For selected examples, see: (a) Takahashi, M.; Maehara, T.; Sengoku, T.; Fujita, N.;
Takabe, K.; Yoda, H. Tetrahedron 2008, 64, 5254; (b) Gautier-Lefebvre, I.; Behr, J.-B.;
Guillerm, G.; Muzard, M. Eur. J. Med. Chem. 2005, 40, 1255; (c) Behr, J.-B.; Erard, A.;
Guillerm, G. Eur. J. Org. Chem. 2002, 1256; (d) Behr, J.-B.; Guillerm, G. Tetrahedron:
Asymmetry 2002,13,111; (e) Eniade, A.; Martin, O. R. Carbohydr. Res. 2002, 337, 273;
(f) Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123,
was concentrated in vacuo to give (ꢀ)-2-epi-lentiginosine (2) as
20
a colorless oil (141 mg, yield: 81%). [
a
]
ꢀ33.6 (c 0.25, H2O) {lit.6
D
20
[
a]
ꢀ31.7 (c 0.25, H2O)}; IR (film): 3361, 2933, 1144, 1061 cmꢀ1
;
D
1H NMR (400 MHz, D2O)
d 1.14e1.50 (m, 3H, H-8, H-7, H-6),
1.64e1.70 (m, 1H, H-6), 1.82e1.85 (m, 1H, H-7), 1.97e2.01 (m, 1H, H-
8), 2.02e2.07 (m,1H, H-5
), 2.08e2.15 (m,1H, H-8a), 2.16 (dd, J¼5.2,
10.1 Hz,1H, H-3 ), 2.96e3.00 (m, 1H, H-5
), 3.42 (dd, J¼6.8, 10.1 Hz,
1H, H-3
), 3.60 (dd, J¼7.0, 8.9 Hz, 1H, H-1), 4.18 (ddd, J¼5.2, 6.8,
a
a
b
b