Journal of the American Chemical Society
Article
(3) For other functionalizations of sp3-hybridized α-amino C−H
moieties see: (a) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. (b) Li,
C.-J. Acc. Chem. Res. 2009, 42, 335. (c) DeBoef, B.; Pastine, S. J.;
Sames, D. J. Am. Chem. Soc. 2004, 126, 6556. (d) Yi, C. S.; Yun, S. Y.;
Guzei, I. A. Organometallics 2004, 23, 5392. (e) Wan, X.; Xing, D.;
Fang, Z.; Li, B.; Zhao, F.; Zhang, K.; Yang, L.; Shi, Z. J. Am. Chem. Soc.
2006, 128, 12046. (f) Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am.
Chem. Soc. 2006, 128, 14220. (g) Murahashi, S.-I.; Nakae, T.; Terai,
H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
(4) (a) Clerici, M. G.; Maspero, F. Synthesis 1980, 305. (b) Nugent,
W. A.; Ovenall, D. W.; Holmes, S. J. Organometallics 1983, 2, 161.
(5) For hydroaminoalkylations catalyzed by group 5 metal complexes
see: (a) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 6690.
(b) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 14940.
(c) Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.; Schafer, L. L.
Angew. Chem., Int. Ed. 2009, 48, 8361. (d) Zi, G.; Zhang, F.; Song, H.
Chem. Commun. 2010, 46, 6296. (e) Zhang, F.; Song, H.; Zi, G. Dalton
Trans. 2011, 40, 1547.
CONCLUSIONS
■
Group 5 metal binaphtholate complexes are highly active
catalysts in the intermolecular hydroaminoalkylation of
unactivated alkenes with secondary amines. The reaction
proceeds with high enantio- and regioselectivity (up to 98%
ee, branched products formed exclusively). The strong
preference to activate primary amine α-C−H bonds originate
from steric constrains hampering alkene insertion, as
demonstrated by isotopic labeling experiments. Mechanistic
studies suggest that the reaction proceeds via a reversible,
nondissociative formation of a six-coordinate metallaaziridine
species, which undergoes facile alkene insertion and subsequent
intramolecular protonolysis. Kinetic studies are supportive of a
monometallic catalytic pathway with either alkene insertion or
amide exchange serving as a rate-determining step. The amide
exchange step is marked by a primary KIE, whereas essentially
no KIE was observed for the aziridine formation/olefin
insertion/protonolysis sequence. The latter result is in
remarkable contrast to previous findings in metallaaziridine
chemistry and should originate from stereoelectronic effects of
the binaphtholate ligand. Simulation experiments show a good
fit of the proposed kinetic model to the original kinetic data.
Reversible nonproductive events include amine coordination to
the catalytically active species and C−H activation of the
aromatic ring for the tantalum catalysts. All turnover and
equilibrium constants displayed nonlinear dependence on the
electronic properties of the amine substrate. Evidence of an
electron-acceptor ligand favoring the amide exchange process
was obtained, which can be used as a guideline for future
catalyst developments. These studies along with work toward
the development of sterically more accessible catalysts for
hydroaminoalkylation of secondary C−H bonds will be further
pursued by our laboratory.
(6) For hydroaminoalkylations catalyzed by group 4 metal complexes
see: (a) Muller, C.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2008, 2731.
̈
(b) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int. Ed. 2009, 48,
1153. (c) Prochnow, I.; Kubiak, R.; Frey, O. N.; Beckhaus, R.; Doye, S.
ChemCatChem 2009, 1, 162. (d) Bexrud, J. A.; Eisenberger, P.; Leitch,
D. C.; Payne, P. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 2116.
(e) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int. Ed. 2010, 49,
2626. (f) Prochnow, I.; Zark, P.; Muller, T.; Doye, S. Angew. Chem.,
̈
Int. Ed. 2011, 50, 6401.
(7) For hydroaminoalkylations catalyzed by late transition metals see:
(a) Jun, C.-H.; Hwang, D.-C.; Na, S.-J. Chem. Commun. 1998, 1405.
(b) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.;
Murai, S. J. Am. Chem. Soc. 2001, 123, 10935. (c) Pan, S.; Endo, K.;
Shibata, T. Org. Lett. 2011, 13, 4692.
(8) Reznichenko, A. L.; Emge, T. J.; Audorsch, S.; Klauber, E. G.;
̈
Hultzsch, K. C.; Schmidt, B. Organometallics 2011, 30, 921.
(9) Horrillo-Martínez, P.; Hultzsch, K. C.; Gil, A.; Branchadell, V.
Eur. J. Org. Chem. 2007, 3311.
(10) (a) Wood, M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.;
Schafer, L. L. Angew. Chem., Int. Ed. 2007, 46, 354. (b) Gott, A. L.;
Clarke, A. J.; Clarkson, G. J.; Scott, P. Organometallics 2007, 26, 1729.
(c) Reznichenko, A. L.; Hultzsch, K. C. Organometallics 2010, 29, 24.
(d) Zi, G.; Zhang, F.; Xiang, L.; Chen, Y.; Fang, W.; Song, H. Dalton
Trans. 2010, 39, 4048. (e) Ayinla, R. O.; Gibson, T.; Schafer, L. L. J.
Organomet. Chem. 2011, 696, 50.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and characterization data, NMR
spectra of all new ligands, complexes and products, HPLC
traces, details of kinetic experiments and simulations. This
material is available free of charge via the Internet at http://
(11) Cummings, S.; Tunge, J. A.; Norton, J. R. Top. Organomet.
Chem. 2005, 10, 1.
(12) Rothwell has synthesized and structurally characterized some of
the binaphtholate tantalum complexes discussed in this study;
however, no catalytic results have been reported, see: (a) Thorn, M.
G.; Moses, J. E.; Fanwick, P. E.; Rothwell, I. P. J. Chem. Soc., Dalton
Trans. 2000, 2659. (b) Ru Son, A. J.; Schweiger, S. W.; Thorn, M. G.;
Moses, J. E.; Fanwick, P. E.; Rothwell, I. P. Dalton Trans. 2003, 1620.
(13) Reznichenko, A. L.; Nguyen, H. N.; Hultzsch, K. C. Angew.
Chem., Int. Ed. 2010, 49, 8984.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(14) Hoffmann, S.; Nicoletti, M.; List, B. J. Am. Chem. Soc. 2006, 128,
13074.
ACKNOWLEDGMENTS
■
(15) (a) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51.
(b) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan,
M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem.
Soc. 1987, 109, 203. (c) Fendrick, C. M.; Marks, T. J. J. Am. Chem. Soc.
1986, 108, 425. (d) Sadow, A. D.; Tilley, T. D. J. Am. Chem. Soc. 2003,
125, 7971.
This work was supported by the National Science Foundation
through a NSF CAREER Award (CHE 0956021).
REFERENCES
■
(1) (a) Roesky, P. W. Angew. Chem., Int. Ed. 2009, 48, 4892.
(b) Eisenberger, P.; Schafer, L. L. Pure Appl. Chem. 2010, 82, 1503.
(2) The hydroaminoalkylation, as discussed in this article, should be
distinguished from the hydroaminomethylation reaction that proceeds
via a tandem hydroformylation/reductive amination sequence, see:
́
(16) (a) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc.
1992, 114, 275. (b) Allan, L. E. N.; Clarkson, G. J.; Fox, D. J.; Gott, A.
L.; Scott, P. J. Am. Chem. Soc. 2010, 132, 15308. (c) Dunne, J. F.;
Fulton, D. B.; Ellern, A.; Sadow, A. D. J. Am. Chem. Soc. 2010, 132,
17680. (d) Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed.
2011, 50, 1865. (e) Arrowsmith, M.; Crimmin, M. R.; Barrett, A. G.
(a) Eilbracht, P.; Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos-
̈
Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.;
Schmidt, A. Chem. Rev. 1999, 99, 3329. (b) Beller, M.; Seayad, J.;
Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368.
M.; Hill, M. S.; Kociok-Kohn, G.; Procopiou, P. A. Organometallics
̈
2011, 30, 1493. (f) Leitch, D. C.; Platel, R. H.; Schafer, L. L. J. Am.
3310
dx.doi.org/10.1021/ja211945m | J. Am. Chem. Soc. 2012, 134, 3300−3311