T. Lampe, J. Pernerstorfer, K.-H. Schlemmer, P. Reinemer and
E. Perzborn, J. Med. Chem., 2005, 48, 5900; Rotigotine:
V. Bertaina-Anglade, C. D. La Rochelle and D. K. Scheller, Eur.
J. Pharmacol., 2006, 548, 106.
3 Handbook of Oligo- and Polythiophenes, ed. D. Fichou, Wiley-VCH,
Weinheim, 1999; Electronic Materials: The Oligomer Approach, ed.
K. Mullen and G. Wegner, Wiley-VCH, Weinheim, 1998; S. Hotta,
¨
in Molecular conductive Materials: Polythiophenes and Oligothio-
phenes. Handbook of Organic conducting Molecules and Polymers,
ed. H. S. Nalwa, Wiley, Chichester, UK, 1997, vol. 2, p. 309.
4 F. Geiger, M. Stoldt, H. Schweizer, P. Bauerle and E. Umbach,
¨
Adv. Mater., 1993, 5, 922; D. Fichou, J. Mater. Chem., 2000,
10, 571; U. Mitschke and P. Bauerle, J. Mater. Chem., 2000,
¨
10, 1471; I. F. Perepichka, D. F. Perepichka, H. Meng and
F. Wudl, Adv. Mater., 2005, 17, 2281.
5 G. Horowitz, D. Fichou, X. Peng, Z. Xu and F. Garnier, Solid
State Commun., 1989, 72, 381; F. Garnier, G. Horowitz, X. Peng
and D. Fichou, Adv. Mater., 1990, 2, 592; F. Garnier, R. Hajlaoui,
A. Yassar and P. Srivastava, Science, 1994, 265, 1684;
H. Sirringhaus, T. Kawase, R. Fried, T. Shimoda,
M. Inbasekaran, W. Wu and E. Woo, Science, 2000, 290, 2123;
B. S. Ong, Y. Wu, P. Liu and S. Gardner, J. Am. Chem. Soc., 2004,
126, 3378; C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch and
C. J. Brabec, Adv. Mater., 2003, 15, 2084.
Fig. 2 Solution (left) and solid state luminescence of quinquethio-
phene 7c (upon irradiation at lexc = 366 nm).
electronic absorption spectra display broad and intense longest
wavelength absorption bands in the near UV between 307 nm
(7a) and 344 nm (7c) (see ESIz for complete data sets). Most
interestingly all representatives reveal strong blue luminescence in
solution with emission maxima at 445 nm (Fig. 2, left). The
symmetrical terthiophenes 7a and 7b and quinquethiophene 7c
exhibit Stokes shifts ranging from 6600 cmꢀ1 (7c) to 10 100 cmꢀ1
(7a). In addition the fluorescence efficiency is quite high as
reflected by fluorescence quantum yields Ff ranging between
8 and 11%. The solid state emissions as determined from solids
and drop cast films are red shifted and appear with greenish
luminescence between 481 (film) and 512 nm (solid) for
oligothiophene 7c (Fig. 2, right).
6 N. Noma, T. Tsuzuki and Y. Shirota, Adv. Mater., 1995, 7, 647.
7 A. Mishra, C. Q. Ma and P. Bauerle, Chem. Rev., 2009, 109, 1141.
¨
8 R. J. Mullins and D. R. Williams, in Name Reactions in Heterocyclic
Chemistry, ed. J. J. Li and E. J. Corey, Wiley & Sons, Hoboken, NJ,
2005, p. 184; H. Fiesselmann and P. Schipprak, Chem. Ber., 1954,
87, 835; H. Fiesselmann, P. Schipprak and L. Zeitler, Chem. Ber.,
1954, 87, 841; H. Fiesselmann and G. Pfeiffer, Chem. Ber., 1954,
87, 848; H. Fiesselmann and F. Thoma, Chem. Ber., 1956, 89, 1907;
H. Fiesselmann and P. Schipprak, Chem. Ber., 1956, 89, 1897.
9 T. J. J. Muller and D. M. D’Souza, Pure Appl. Chem., 2008,
¨
Strategies, and Applications, Wiley-VCH, Weinheim, 2007, p. 179.
¨
80, 609; T. J. J. Muller, Functional Organic Materials Syntheses,
10 T. J. J. Muller, Top. Heterocycl. Chem., 2010, 25, 25; B. Willy
¨
and T. J. J. Muller, Curr. Org. Chem., 2009, 13, 1777; B. Willy and
¨
T. J. J. Muller, ARKIVOC, 2008, Part I, 195; D. M. D’Souza and
In conclusion we have developed an efficient and rapid
three-component synthesis of 2,4-disubstituted thiophene
5-carboxylates in the sense of a consecutive Sonogashira–
Fiesselmann sequence. This one-pot synthesis was also success-
fully transposed as a pseudo-five-component reaction for the
preparation of symmetrical terthiophenes and a quinquethio-
phene. All oligothiophenes luminesce with emission of intense
blue light in solution and green light from the solid. With this
straightforward diversity-oriented access to luminescent oligothio-
phenes in hand the stage is now set for the development of tunable
materials, which can be organized by esterification. Oligomeri-
zation studies under mild enzymatic conditions and more detailed
photophysical investigations are currently underway.
¨
T. J. J. Muller, Chem. Soc. Rev., 2007, 36, 1095; T. J. J. Muller,
¨
Targets Heterocycl. Syst., 2006, 10, 54.
¨
11 J. Schonhaber and T. J. J. Muller, Org. Biomol. Chem., 2011,
¨
¨
9, 6196; J. Scho
2010, 12, 4122; D. M. D’Souza, A. Kiel, D. P. Herten and T. J.
J. Muller, Chem.–Eur. J., 2008, 14, 529; D. M. D’Souza,
¨
¨
nhaber, W. Frank and T. J. J. Muller, Org. Lett.,
¨
F. Rominger and T. J. J. Muller, Angew. Chem., Int. Ed., 2005,
¨
Commun., 2006, 4096; D. M. D’Souza, W.-W. Liao, F. Rominger
¨
44, 153; D. M. D’Souza, F. Rominger and T. J. J. Muller, Chem.
and T. J. J. Muller, Org. Biomol. Chem., 2008, 6, 532.
¨
12 D. M. D’Souza and T. J. J. Muller, Nat. Protoc., 2008, 3, 1660;
¨
A. S. Karpov and T. J. J. Muller, Org. Lett., 2003, 5, 3451.
¨
13 For Fiesselmann thiophene syntheses from alkynones, see D. Obrecht,
F. Gerber, D. Sprenger and T. Masquelin, Helv. Chim. Acta, 1997,
80, 531; M. T. Herrero, I. Tellitu, E. Dominguez, S. Hernandez,
I. Moreno and R. SanMartin, Tetrahedron, 2002, 58, 8581.
The support of this work by CLIB graduate cluster (scholarship
for M. T.) and the Fonds der Chemischen Industrie is gratefully
acknowledged. The authors also cordially thank B. Sc. Lisa-Maria
14 Synthesis of quinquethiophene 7c: Pd(PPh3)4 (92 mg, 0.08 mmol),
CuI (30 mg, 0.16 mmol), and dry THF (15 mL) were successively
placed in the reaction vessel under nitrogen at room temp. After
the addition of 2-ethynyl thiophene (4k) (324 mg, 3.00 mmol),
bisacidchloride 6 (209 mg, 1.00 mmol), and triethylamine (314 mL,
2.20 mmol) the reaction mixture was stirred at room temp. for 4 h.
Then, ethanol (2 mL), ethyl 2-mercapto acetate (5) (364 mL,
2.50 mmol), and DBU (506 mL, 3.50 mmol) were successively
added at 0 1C and the solution was stirred at 0 1C for 24 h. After
workup and purification 423 mg (76%) of the analytically pure
quinquethiophene 7c was obtained as a yellow solid, mp 141 1C.
1H NMR (500 MHz, CDCl3): d 1.37 (t, 3J = 7.1 Hz, 6H),
4.35 (q, 3J = 7.1 Hz, 4H), 7.07 (dd, 3J = 3.7, 5.0 Hz, 2H), 7.33
(dd, 3J = 2.3, 7.4 Hz, 4H), 7.35 (s, 2H), 7.61 (s, 2H); 13C NMR
(125 MHz, CDCl3): d 14.7 (CH3), 61.7 (CH2), 124.7 (Cquat), 125.9
(CH), 126.8 (CH), 127.5 (CH), 128.6 (CH), 129.7 (CH), 136.2
(Cquart), 137.7 (Cquart), 140.6 (Cquat), 141.7 (Cquat), 162.2 (Cquat);
MALDI MS: m/z (%) = 556 ([M+], 100); anal. calcd. for
C26H20O4S5 (556.8): C 56.09, H 3.62%; found: C 56.10, H 3.48%.
Kavallar and B. Sc. Timo Lessing (both University of Dusseldorf)
¨
for experimental assistance.
Notes and references
1 S. Gronowitz, in Thiophene and Its Derivatives, Part 1, ed.
S. Gronowitz, Wiley & Sons, New York, 1985, p. 88.
2 Canagliflozin: E. C. Chao, Drugs Future, 2011, 36, 351; DS-1:
K. A. Wafford, M. B. Van Niel, Q. P. Ma, E. Horridge,
M. B. Herd, D. R. Peden, D. Belelli and J. J. Lambert, Neuro-
pharmacology, 2009, 56, 182; Eprosartan: L. Ruilope, B. Jager and
¨
B. Prichard, Blood Pressure, 2001, 10, 223; Gacyclidine: H. Hirbec,
M. Gaviria and J. Vignon, CNS Drug Rev., 2006, 7, 172; Indiplon:
R. E. Petroski, J. E. Pomeroy, R. Das, H. Bowman, W. Yang,
A. P. Chen and A. C. Foster, J. Pharmacol. Exp. Ther., 2005,
317, 369; Rivaroxaban: S. Roehrig, A. Straub, J. Pohlmann,
c
2082 Chem. Commun., 2012, 48, 2080–2082
This journal is The Royal Society of Chemistry 2012