1634
F. Risitano et al.
LETTER
(2) (a) Shibuya, M.; Terauchi, H. Tetrahedron Lett. 1987, 28,
2619. (b) Armstrong, R. W.; Moran, E. J. J. Am. Chem. Soc.
1992, 114, 371. (c) Hashimoto, M.; Terashima, S. Chem.
Lett. 1994, 1001. (d) Hodgkinson, T. J.; Kelland, L. R.;
Shipman, M.; Vile, J. Tetrahedron 1998, 54, 6029.
(3) Reviews: (a) Weber, L.; Illgen, K.; Almstetter, M. Synlett
1999, 366. (b) Dax, S. L.; McNally, J. J.; Youngman, M. A.
Curr. Med. Chem. 1999, 6, 255.
(4) (a) Risitano, F.; Grassi, G.; Foti, F.; Bilardo, C. Tetrahedron
2000, 56, 9669. (b) Grassi, G.; Risitano, F.; Foti, F.;
Cordaro, M. Synlett 2001, 812. (c) Risitano, F.; Grassi, G.;
Foti, F.; Romeo, R. Synthesis 2002, 116. (d) Risitano, F.;
Grassi, G.; Foti, F.; Nicolò, F.; Condello, M. Tetrahedron
2002, 58, 191.
5, which has formed in the interim from the aldehyde in
the presence of the AcOH/AcONH4 mixture. Instead of
cyclizing to 8, this amine intercepts the aldehyde (or the
aldimine) that is still present in the reaction environment
and evolves, again stereoselectively, to E-imine 7. In this
the NH imine and the Schiff base moiety are appropriately
dislocated in order to give rise to an 6-endo-trig cycliza-
tion,11 which in turn guides the formation of aziridine
functionality within the bicyclic ring system 3 by 3-exo-
tet cyclization11 between the nitrogen atom originally
from the Shiff base and the electrophilic C-Cl fragment.
This proposed ring-closure of the intermediate 7 is consis-
tent with a chair-like transition state with R substituents
disposed in a pseudo-equatorial manner.
(5) (a) Heine, H. W.; Weese, R. H.; Cooper, R. A.; Dubertaki,
A. J. J. Org. Chem. 1967, 32, 2708. (b) Mahmoodi, N. O.;
Kiyani, H. Bull. Korean Chem. Soc. 2004, 25, 1417.
(6) Microwave Irradiation.
A mixture of phenacyl chloride 1 (463.7 mg, 3 mmol),
aldehyde 2 (6 mmol), ammonium acetate (1.55 g, 20 mmol)
and glacial acetic acid (10 mL) in n-PrOH (20 mL) in the
presence of molecular sieves (4 Å) was irradiated for 5–10
min in a self-tunable CEM microwave synthesizer at 90 °C.
After cooling the reaction to r.t., the solvent was removed
under vacuum and the residue was crystallized from EtOH to
give 3 as colorless crystals.
(7) Conventional heating.
As above procedure, but absolute EtOH was used as solvent
and the reaction mixture was refluxed for 2–3 h.
(8) Selected data.
Compound 3a: mp 155–156 °C (lit.5a mp 153–154 °C). IR
(nujol): 1597, 1569, 1046 cm–1. 1H NMR (CDCl3): d = 2.72
(d, J = 2.2 Hz, HC-6), 3.74 (dd, J = 2.2 and 2.9 Hz, HC-5),
6.22 (d, J = 2.9 Hz, HC-2), 7.30–8.01 (m, arom., 15 H). 13
C
NMR (CDCl3): d = 49.0 (C-5), 56.4 (C-6), 97.4 (C-2), 170.4
(C-3). Anal. Calcd for C22H18N2: C, 85.13; H, 5.85; N, 9.03.
Found: C, 85.31; H, 5.94; N, 9.14.
Compound 3b: mp 134–135 °C. IR (nujol): 1601, 1578,
1050 cm–1. 1H NMR (CDCl3): d = 2.43 (s, 3 H), 2.65 (s, 3 H),
2.85 (d, J = 2.1 Hz, HC-6), 3.65 (dd, J = 2.1 and 3.0 Hz, HC-
5), 6.35 (d, J = 3.0 Hz, HC-2), 7.18–8.05 (m, arom., 13 H).
13C NMR (CDCl3): d = 47.8 (C-5), 56.8 (C-6), 94.5 (C-2),
171.2 (C-3). Anal. Calcd. for C24H22N2: C, 85.17; H, 6.55; N,
8.28. Found: C, 85.40; H, 6.73; N, 8.11.
Scheme 2
Compound 3c: mp 152–153 °C. IR (nujol): 1599, 1573,
1048 cm–1. 1H NMR (CDCl3): d = 2.43 (s, 3 H), 2.46 (s, 3 H),
2.72 (d, J = 1.8 Hz, HC-6), 3.78 (dd, J = 1.8 and 2.2 Hz, HC-
5), 6.24 (d, J = 2.2 Hz, HC-2), 7.16–8.08 (m, arom., 13 H).
13C NMR (CDCl3): d = 49.3 (C-5), 56.6 (C-6), 99.1 (C-2),
170.4 (C-3). Anal. Calcd for C24H22N2: C, 85.17; H, 6.55; N,
8.28. Found C, 85.32; H, 6.69; N, 8.38.
Compound 3d: mp 148–149 °C. IR (nujol): 1599, 1580,
1040 cm–1. 1H NMR (CDCl3): d = 2.66 (d, J = 1.9 Hz, HC-
6), 3.70 (dd, J = 1.9 and 2.4 Hz, HC-5), 3.77 (s, 3 H), 3.79
(s, 3 H), 6.17 (d, J = 2.4 Hz, HC-2), 6.82–7.98 (m, arom., 13
H). 13C NMR (CDCl3): d = 49.0 (C-5), 53.8 (C-6), 97.3 (C-
2), 170.4 (C-3). Anal. Calcd for C24H22N2O2: C, 77.81; H,
5.99; N, 7.56. Found: C, 77.98; H, 6.08; N, 7.69.
Compound 3e: mp 118–119 °C. IR (nujol): 1596, 1572,
1048 cm–1. 1H NMR (CDCl3): d = 2.62 (d, J = 1.8 Hz, HC-
6), 3.65 (dd, J = 1.8 and 2.7 Hz, HC-5), 6.12 (d, J = 2.7 Hz,
HC-2), 7.23–7.95 (m, arom., 13 H). 13C NMR (CDCl3): d =
48.2 (C-5), 56.5 (C-6), 96.7 (C-2), 170.5 (C-3). Anal. Calcd
for C22H16Cl2N2: C, 69.67; H, 4.25; N, 7.39. Found: C,
69.80; H, 4.32; N, 7.21.
The advantage of this synthesis in comparison with previ-
ous ones is evident: it rests on a highly efficient reaction
that is effectively diastereoselective, requires mild reac-
tion conditions and for which work up is straightforward.
The tedious preliminary preparation procedures required
for type 8 N-unsubstituted aziridines are avoided.12
In conclusion, this easy route to stereodefined bridgehead
aziridines opens the door to various applications for this
attractive class of compounds.5b,13
References
(1) (a) Wang, S.; Kohn, H. J. Org. Chem. 1996, 61, 9202.
(b) Wang, S.; Kohn, H. J. Org. Chem. 1997, 62, 5404.
(c) Coleman, R. S.; Li, J.; Navarro, A. Angew. Chem. Int. Ed.
2001, 40, 1736. (d) Borzilleri, R. M.; Zheng, X.; Kim, S.-H.;
Johnson, J. A.; Fairchild, C. R.; Lee, F. Y. F.; Long, B. H.;
Vite, G. D. Org. Lett. 2001, 3, 2693. (e) Subramaniam, G.;
Paz, M. M.; Kumar, G. S.; Das, A.; Palom, Y.; Clement, C.
C.; Patel, D. J.; Tomasz, M. Biochemistry 2001, 40, 10473.
Compound 3f: mp 135–136 °C. IR (nujol): 1600, 1581, 1049
cm–1. 1H NMR (CDCl3): d = 2.29 (s, 3 H), 2.42 (s, 3 H), 2.69
Synlett 2005, No. 10, 1633–1635 © Thieme Stuttgart · New York