Communication
ChemComm
8 C. Chou, D. D. Young and A. Deiters, ChemBioChem, 2010, 11,
972–977.
9 A. Prokup, J. Hemphill and A. Deiters, J. Am. Chem. Soc., 2012, 134,
3810–3815.
Cre enzyme excises the dsRed gene and induces EGFP expression
(Fig. 5a). Quantification of the micrographs through fluorescent
cell counting further confirms these results (Fig. 5b).
10 S. Huang, M. Bjornsti and P. Houghton, Cancer Biol. Ther., 2003, 2,
222–232.
11 J. Choi, J. Chen, S. Schreiber and J. Clardy, Science, 1996, 273,
239–242.
12 R. Pollock and T. Clackson, Curr. Opin. Biotechnol., 2002, 13,
459–467.
13 D. J. Williams, H. L. Puhl and S. R. Ikeda, PLoS One, 2009, 4, e7474.
14 N. Jullien, F. Sampieri, A. Enjalbert and J. P. Herman, Nucleic Acids
Res., 2003, 31, e131.
15 S. Zhu, H. Zhang and M. Matunis, Exp. Cell Res., 2006, 312,
1042–1049.
16 S. Ho, S. Biggar, D. Spencer, S. Schreiber and G. Crabtree, Nature,
1996, 382, 822–826.
17 T. Komatsu, I. Kukelyansky, J. McCaffery, T. Ueno, L. Varela and
T. Inoue, Nat. Methods, 2010, 7, U206–U261.
18 M. Pratt, E. Schwartz and T. Muir, Proc. Natl. Acad. Sci. U. S. A., 2007,
104, 11209–11214.
19 M. Putyrski and C. Schultz, Fed. Eur. Biochem. Soc., Lett., 2012, 586,
2097–2105.
20 A. V. Karginov, Y. Zou, D. Shirvanyants, P. Kota, N. V. Dokholyan,
D. D. Young, K. M. Hahn and A. Deiters, J. Am. Chem. Soc., 2011, 133,
420–423.
21 K. Boeckeler, C. Rosse, M. Howell and P. Parker, J. Cell Sci., 2010,
123, 2725–2732.
22 J. Gore, F. Ritort and C. Bustamante, Proc. Natl. Acad. Sci. U. S. A.,
2003, 100, 12564–12569.
23 R. B. Kapust and D. S. Waugh, Protein Express Purifi., 2000, 19,
312–318.
We have successfully developed a light-cleavable rapamycin
dimer (dRap) that does not induce FKBP12 and FRB hetero-
dimerization until it is activated through UV exposure. Previously
reported, caged rapamycin analogues have been applied to photo-
chemically control protein phosphorylation;20,38,39 however, these
molecules have limitations. They require protein engineering of
the FKBP domain or mislocalization of the rapamycin molecule
outside of the cell, since the presence of the synthetic caging
groups alone did not prevent rapamycin-induced FKBP12-FRB
dimerization. Thus, the caged rapamycin analogues could
not be directly interfaced with the wide range of biological
processes that have been placed under conditional control
through the construction of FKBP12-Rap-FRB based biological
switches in cells and organisms. We envisioned developing an
optochemical approach that utilizes recruitment of an entire
protein40 in order to dramatically increase the steric hindrance
imposed by the caging group installed at position C-40 of
rapamycin. Moreover, we planned to keep the design as simple
as possible and to utilize a naturally occurring, endogenous
protein for this purpose. Thus, the light-cleavable rapamycin
dimer dRap was synthesized and we found that dRap was
completely inactive as a heterodimerizer, until irradiated.
Because of the modularity of FRB and FKBP12, dRap has
implications in the light-regulation of protein dimerization
and protein activity in biological processes that have already
been rendered responsive to rapamycin, but could not be
readily placed under optochemical control until now.15–20
We would like to thank Dr Stephen Ikeda (NIH) and Dr Jean-Paul
24 T. Tolbert, D. Franke and C. Wong, Bioorg. Med. Chem., 2005, 13,
909–915.
25 M. Knuesel, Y. Wan, Z. Xiao, E. Holinger, N. Lowe, W. Wang and
X. Liu, Mol. Cell. Proteomics, 2003, 2, 1225–1233.
26 X. Yang, J. Gregan, K. Lindner, H. Young and S. Kearsey, BMC Mol.
Biol., 2005, 6, DOI: 10.1186/1471-2199-6-13.
27 S. S. Wigdal, J. L. Anderson, G. J. Vidugiris, J. Shultz, K. V. Wood and
F. Fan, Curr. Chem. Genomics, 2008, 2, 16–28.
28 D. Adams, J. Bliska and N. Cozzarelli, J. Mol. Biol., 1992, 226,
661–673.
´
Herman (CNRS et Aix-Marseille Universite) for plasmids. This work
29 J. Laplaza, B. Torres, Y. Jin and T. Jeffries, Enzyme Microb. Technol.,
2006, 38, 741–747.
was funded in part by the NSF (CHE-1404836).
30 L. Lyznik, W. Gordon-Kamm and Y. Tao, Plant Cell Rep., 2003, 21,
925–932.
31 A. Nagy, Genesis, 2000, 26, 99–109.
Notes and references
32 M. Lakso, B. Sauer, B. Mosinger, E. Lee, R. Manning, S. Yu,
K. Mulder and H. Westphal, Proc. Natl. Acad. Sci. U. S. A., 1992,
89, 6232–6236.
1 S. Bell and A. Dutta, Annu. Rev. Biochem., 2002, 71, 333–374.
2 R. Csepanyi-Komi, M. Levay and E. Ligeti, Mol. Cell. Endocrinol.,
2012, 353, 10–20.
33 L. van der Weyden and A. Bradley, Annu. Rev. Genomics Hum. Genet.,
2006, 7, 247–276.
3 R. Vale, Cell, 2003, 112, 467–480.
4 W. Merrick, Microbiol. Rev., 1992, 56, 291–315.
34 K. Link, Y. Shi and J. Koh, J. Am. Chem. Soc., 2005, 127, 13088–13089.
35 W. Edwards, D. Young and A. Deiters, ACS Chem. Biol., 2009, 4,
441–445.
5 A. R. Buskirk and D. R. Liu, Chem. Biol., 2005, 12, 151–161;
M. Golynskiy, M. Koay, J. Vinkenborg and M. Merkx, ChemBioChem,
2011, 12, 353–361.
36 M. Kennedy, R. Hughes, L. Peteya, J. Schwartz, M. Ehlers and
C. Tucker, Nat. Methods, 2010, 7, 973–975.
37 Y. S. Yang and T. E. Hughes, Biotechniques, 2001, 31, 1036.
38 N. Umeda, T. Ueno, C. Pohlmeyer, T. Nagano and T. Inoue, J. Am.
Chem. Soc., 2011, 133, 12–14.
39 O. Sadovski, A. Jaikaran, S. Samanta, M. Fabian, R. Dowling,
N. Sonenberg and G. Woolley, Bioorg. Med. Chem., 2010, 18,
7746–7752.
6 L. Fenno, O. Yizhar, K. Deisseroth, S. Hyman, T. Jessell, C. Shatz,
C. Stevens and H. Zoghbi, Annu. Rev. Neurosci., 2011, 34, 389–412;
H. M. Lee, D. R. Larson and D. S. Lawrence, ACS Chem. Biol., 2009, 4,
409–427; G. Mayer and A. Heckel, Angew. Chem., Int. Ed., 2006, 45,
4900–4921; Q. Liu and A. Deiters, Acc. Chem. Res., 2014, 47, 45–55;
A. S. Baker and A. Deiters, ACS Chem. Biol., 2014, 9, 1398–1407;
L. Gardner and A. Deiters, Curr. Opin. Chem. Biol., 2012, 16, 292–299.
7 D. D. Young and A. Deiters, Angew. Chem., Int. Ed., 2007, 46,
4290–4292.
40 K. Harwood and S. Miller, ChemBioChem, 2009, 10, 2855–2857.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015