Journal of the American Chemical Society
Page 8 of 10
racemates in the same assemblies. Chem. Commun. 2013, 49, 9320,
DOI: 10.1039/c3cc45806g.
(17) Palmans, A. R. A. Deracemisations under kinetic and
thermodynamic control. Mol. Syst. Des. Eng. 2017, 2, 34, DOI:
10.1039/C6ME00088F.
(18) Pérez-García, L.; Amabilino, D. B. Spontaneous resolution,
whence and whither: From enantiomorphic solids to chiral liquid
crystals, monolayers and macro- and supra-molecular polymers
and assemblies. Chem. Soc. Rev. 2007, 36, 941, DOI:
10.1039/b610714a.
(19) Lorenz, H.; Seidel-Morgenstern, A. Processes to separate
enantiomers. Angew. Chem. Int.Ed. 2014, 53, 1218, DOI:
10.1002/anie.201302823.
measurements, Ralf Bovee for elemental analysis, and Dr.
Xianwen Lou for assistance with chiral-HPLC analysis. We
thank Prof. Richard M. Kellogg for fruitful discussions.
1
2
3
4
5
6
7
8
REFERENCES
(1) Pasteur, L. Recherches sur les relations qui peuvent exister
entre la forme crystalline, la composition chimique et le sens de
la polarisation rotatoire. Ann. Chim. Phys. 1848, 24, 442.
(2) Jacques, J.; Collet, A.; Wilen, H. S. Enantiomers, Racemates
and Resolutions, 1st ed.; Krieger Publishing Company, Florida: FL,
1991.
(3) Srisanga, S.; Ter Horst, J. H. Racemic compound,
conglomerate, or solid solution: Phase diagram screening of chiral
compounds. Cryst. Growth Des. 2010, 10, 1808, DOI:
10.1021/cg901483v.
(4) Wilmink, P.; Rougeot, C.; Wurst, K.; Sanselme, M.; van der
Meijden, M.; Saletra, W.; Coquerel, G.; Kellogg, R. M. Attrition
Induced Deracemisation of 2‑Fluorophenylglycine. Org. Process
Res. Dev. 2015, 19, 302.
(5) Noorduin, W. L.; Izumi, T.; Millemaggi, A.; Leeman, M.;
Meekes, H.; Van Enckevort, W. J. P.; Kellogg, R. M.; Kaptein, B.;
Vlieg, E.; Blackmond, D. G. Emergence of a single solid chiral state
from a nearly racemic amino acid derivative. J. Am. Chem. Soc.
2008, 130, 1158, DOI: 10.1021/ja7106349.
(6) Hein, J. E.; Huynh Cao, B.; Viedma, C.; Kellogg, R. M.;
Blackmond, D. G. Pasteur’s Tweezers revisited: On the
mechanism of attrition-enhanced deracemization and resolution
of chiral conglomerate solids. J. Am. Chem. Soc. 2012, 134, 12629,
DOI: 10.1021/ja303566g.
(7) Kellogg, R.; van der Meijden, M.; Leeman, M.; Gelens, E.;
Noorduin, W.; Meekes, H.; van Enckevort, W.; Kaptein, B.; Vlieg,
E. Attrition-Enhanced Deracemization in the Synthesis of
Clopidogrel-A Practical Application of a New Discovery. Org.
Process Res. Dev. 2009, 13, 1195, DOI: 10.1021/op900243c.
(8) Tsuji, H. Poly(lactide) stereocomplexes: Formation,
structure, properties, degradation, and applications. Macromol.
Biosci. 2005, 5, 569, DOI: 10.1002/mabi.200500062.
(9) Yang, Y.; Rice, B.; Shi, X.; Brandt, J. R.; Correa Da Costa, R.;
Hedley, G. J.; Smilgies, D. M.; Frost, J. M.; Samuel, I. D. W.; Otero-
De-La-Roza, A.; Johnson, E. R.; Jelfs, K. E.; Nelson, J.; Campbell, A.
J.; Fuchter, M. J. Emergent Properties of an Organic
Semiconductor Driven by its Molecular Chirality. ACS Nano 2017,
11, 8329, DOI: 10.1021/acsnano.7b03540.
(10) Lusi, M. Engineering Crystal Properties through Solid
Solutions. Cryst. Growth Des. 2018, 18, 3704, DOI:
10.1021/acs.cgd.7b01643.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) Kellogg, R. M. Practical Stereochemistry. Acc. Chem. Res.
2017, 50, 905, DOI: 10.1021/acs.accounts.6b00630.
(21) Bennani, Y. L.; Hanessian, S. trans -1,2-
Diaminocyclohexane Derivatives as Chiral Reagents, Scaffolds,
and Ligands for Catalysis: Applications in Asymmetric Synthesis
and Molecular Recognition. Chem. Rev. 1997, 97, 3161, DOI:
10.1021/cr9407577.
(22) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng,
L. Highly enantioselective epoxidation catalysts derived from 1,2-
diaminocyclohexane. J. Am. Chem. Soc. 1991, 113, 7063, DOI:
10.1021/ja00018a068.
(23) Chen, C.-F.; Li, M.; Li, S.-H.; Zhang, D.; Cai, M.; Duan, L.;
Fung, M.-K. Chiral Stable Thermally Activated Delayed
Fluorescence Enantiomers for Highly Efficient OLEDs with
Circularly Polarized Electroluminescence. Angew. Chem. Int. Ed.
2018, 100084, 2939, DOI: 10.1002/anie.201800198.
(24) Kumar, J.; Nakashima, T.; Tsumatori, H.; Mori, M.; Naito,
M.; Kawai, T. Circularly polarized luminescence in
supramolecular assemblies of chiral bichromophoric perylene
bisimides.
Chem.
Eur.
J.
2013,
19,
14090,
DOI:
10.1002/chem.201302146.
(25) Sethy, R.; Métivier, R.; Brosseau, A.; Kawai, T.; Nakashima,
T. Impact of Optical Purity on the Light Harvesting Property in
Supramolecular Nanofibers. J. Phys. Chem. Lett. 2018, 9, 4516,
DOI: 10.1021/acs.jpclett.8b02015.
(26) Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H.
Prominent Gelation and Chiral Aggregation of Alkylamides
Derived fromtrans-1,2-Diaminocyclohexane. Angew. Chem. Int.
Ed. Engl. 1996, 35, 1949, DOI: 10.1002/anie.199619491.
(27) Zweep, N.; Hopkinson, A.; Meetsma, A.; Browne, W. R.;
Feringa, B. L.; Van Esch, J. H. Balancing hydrogen bonding and
van der waals interactions in cyclohexane-based bisamide and
bisurea organogelators. Langmuir 2009, 25, 8802, DOI:
10.1021/la9004714.
(28) Smith, D. K. Lost in translation? Chirality effects in the
self-assembly of nanostructured gel-phase materials. Chem. Soc.
Rev. 2009, 38, 684, DOI: 10.1039/b800409a.
(29) Yajima, T.; Tabuchi, E.; Nogami, E.; Yamagishi, A.; Sato, H.
Perfluorinated gelators for solidifying fluorous solvents: Effects of
chain length and molecular chirality. RSC Adv. 2015, 5, 80542,
DOI: 10.1039/c5ra12656h.
(30) Sato, H.; Yajima, T.; Yamagishi, A. Stereochemical effects
on dynamics in two-component systems of gelators with
perfluoroalkyl and alkyl chains as revealed by vibrational circular
dichroism. Phys. Chem. Chem. Phys. 2018, 20, 3210.
(31) Makiguchi, W.; Tanabe, J.; Yamada, H.; Iida, H.; Taura, D.;
Ousaka, N.; Yashima, E. Chirality- and sequence-selective
successive self-sorting via specific homo- and complementary-
duplex formations. Nat. Commun. 2015, 6, 1, DOI:
10.1038/ncomms8236.
(11) Brandel, C.; Petit, S.; Cartigny, Y.; Coquerel, G. Structural
Aspects of Solid Solutions of Enantiomers. Curr. Pharm. Des. 2016,
22, 4929, DOI: 10.2174/1381612822666160720164230.
(12) Timmermans, J. Plastic crystals: A historical review. J. Phys.
Chem. Solids 1961, 18, 1, DOI: 10.1016/0022-3697(61)90076-2.
(13) Wang, P.; Dai, Q.; Zakeeruddin, S. M.; Forsyth, M.;
MacFarlane, D. R.; Grätzel, M. Ambient temperature plastic
crystal electrolyte for efficient, all-solid-state dye-sensitized solar
cell. J. Am. Chem. Soc. 2004, 126, 13590, DOI: 10.1021/ja045013h.
(14) Fasel, R.; Parschau, M.; Ernst, K. H. Amplification of
chirality in two-dimensional enantiomorphous lattices. Nature
2006, 439, 449, DOI: 10.1016/j.cocis.2007.08.011.
(15) Walba, D. M.; Körblova, E.; Shao, R.; Maclennan, J. E.; Link,
D. R.; Glaser, M. A.; Clark, N. A. A ferroelectric liquid crystal
conglomerate composed of racemic molecules. Science 2000, 288,
2181, DOI: 10.1126/science.288.5474.2181.
(16) Lin, J.; Guo, Z.; Plas, J.; Amabilino, D. B.; De Feyter, S.;
Schenning, A. P. H. J. Homochiral and heterochiral assembly
preferences at different length scales-conglomerates and
(32) Pal, A.; Besenius, P.; Sijbesma, R. P. Self-sorting in rodlike
micelles of chiral bisurea bolaamphiphiles. J. Am. Chem. Soc. 2011,
133, 12987, DOI: 10.1021/ja205345e.
ACS Paragon Plus Environment