PT with chiral amines may be used as supramolecular chiral
catalysts for asymmetric synthesis and also as chiral materials for
chiral recognition.14
Notes and references
1 (a) M. Leclerc and K. Faıd, Adv. Mater., 1997, 9, 1087–1094;
¨
(b) R. D. McCullough, Adv. Mater., 1998, 10, 93–116; (c) H. S. O.
Chan and S. C. Ng, Prog. Polym. Sci., 1998, 23, 1167–1231;
(d) Handbook of Oligo- and Polythiophenes, ed. D. Fichou, Wiley-
VCH, Weinheim, 1999; (e) H.-A. Ho, A. Najari and M. Leclerc, Acc.
Chem. Res., 2008, 41, 168–178; (f) Handbook of Thiophene-based
Materials: Applications in Organic Electronics and Photonics, ed.
I. F. Perepichka and D. F. Perepichka, John Wiley & Sons, West
Sussex, 2009.
Fig. 3 (a) Plots of the molar circular dichroism (2nd Cotton effect)
(De2nd) of P1–PEOPT mixtures with Cu(OTf)2 (red) and AgOTf (blue)
in CHCl3/CH3CN (99/1 vol/vol) versus PEOPT content; [P1] +
[PEOPT] = 0.2 mM unitꢁ1, ([P1] + [PEOPT]) : [Cu(OTf)2 or AgOTf] =
1 : 1. These spectra were measured after the mixtures had been allowed
to stand for 3 h at rt. (b) CD and absorption spectra of P1 (black),
P1/PEOPT (1/1) mixture (red), and PEOPT (blue) with Cu(OTf)2 in
CHCl3/CH3CN (99/1 vol/vol) at 25 1C; [P1] + [PEOPT] = 0.2 mM
unitꢁ1, ([P1] + [PEOPT]) :[Cu(OTf)2] = 1 : 1. These spectra were
measured after the mixtures had been allowed to stand for 3 h at rt.
2 (a) X. Chen, K.-Z. Xing and O. Inganas, Chem. Mater., 1996, 8,
¨
2439–2443; (b) M. Fuchiwaki, W. Takashima and K. Kaneto, Mol.
Cryst. Liq. Cryst., 2002, 374, 513–520; (c) E. Smela, Adv. Mater.,
2003, 15, 481–494.
3 (a) B. M. W. Langeveld-Voss, R. A. J. Janssen and E. W. Meijer,
J. Mol. Struct., 2000, 521, 285–301; (b) F. J. M. Hoeben,
P. Jonkheijm, E. W. Meijer and A. P. H. J. Schenning, Chem.
Rev., 2005, 105, 1491–1546; (c) L. A. P. Kane-Maguire and
G. G. Wallace, Chem. Soc. Rev., 2010, 39, 2545–2576.
mixed in poor solvents, thereby the intermolecular supramolecular
p–p stacking took place,7,8 thus showing an ICD in the achiral PT
chromophore region. Fig. S7 (ESIz) shows the CD and absorption
spectra of mixtures of PEOPT and P1 with different molar ratios
in the presence of Cu(II) (a) and Ag(I) ions (d). The ICD intensities
of the mixed chiral and achiral PT–metal complexes gradually
increased with time, but they did not reach constant values even
after 3 h. The plots of the second Cotton effect intensity (De2nd) of
the PT mixtures with Ag(I) ions versus the amounts of PEOPT in
the mixtures showed an almost linear relationship between them,
indicating that almost no chiral information transfer took place
for the mixtures in the presence of Ag(I) (Fig. 3a). In sharp
contrast, the same plots with Cu(II) ions displayed a remarkable
nonlinear relationship between the content of PEOPT and
the De2nd values. Most importantly, the Cotton effect signs of
the PEOPT and P1 mixtures were reversed from those of the
PEOPT–Cu(II) complex, and their ICD patterns were significantly
different from that of the PEOPT–Cu(II) complex10 (Fig. 3b and
Fig. S7a, ESIz). These dramatic changes in the ICD patterns and
signs clearly suggest that the chirality of PEOPT is definitely
transferred to the achiral P1 chains, which are incorporated into
the metal-induced supramolecular chiral aggregates.
4 (a) M. Andersson, P. O. Ekeblad, T. Hjertberg, O. Wennerstrom
¨
(b) Z.-B. Zhang, M. Fujiki, M. Motonaga, H. Nakashima,
K. Torimitsu and H.-Z. Tang, Macromolecules, 2002, 35,
941–944; (c) K. P. R. Nilsson, J. D. M. Olsson, P. Konradsson
¨
and O. Inganas, Polym. Commun., 1991, 32, 546–549;
and O. Inganas, Macromolecules, 2004, 37, 6316–6321;
¨
(d) J. R. Matthews, F. Goldoni, A. P. H. J. Schenning and
E. W. Meijer, Chem. Commun., 2005, 5503–5505.
5 (a) P. C. Ewbank, G. Nuding, H. Suenaga, R. D. McCullough and
S. Shinkai, Tetrahedron Lett., 2001, 42, 155–157; (b) C. Li,
M. Numata, M. Takeuchi and S. Shinkai, Chem.–Asian J., 2006,
1, 95–101; (c) C. Li, M. Numata, T. Hasegawa, K. Sakurai and
S. Shinkai, Chem. Lett., 2005, 34, 1354–1355; (d) S. Haraguchi,
Y. Tsuchiya, T. Shiraki, K. Sugikawa, K. Sada and S. Shinkai,
Chem.–Eur. J., 2009, 15, 11221–11228.
6 (a) K. P. R. Nilsson, J. Rydberg, L. Baltzer and O. Inganas, Proc.
¨
Natl. Acad. Sci. U. S. A., 2003, 100, 10170–10174; (b) K. P. R.
Nilsson, J. Rydberg, L. Baltzer and O. Inganas, Proc. Natl. Acad. Sci.
U. S. A., 2004, 101, 11197–11202.
¨
7 B. M. W. Langeveld-Voss, R. J. M. Waterval, R. A. J. Janssen and
E. W. Meijer, Macromolecules, 1999, 32, 227–230.
8 (a) K. Van den Bergh, J. Huybrechts, T. Verbiest and
G. Koeckelberghs, Chem.–Eur. J., 2008, 14, 9122–9125;
(b) K. Van den Bergh, I. Cosemans, T. Verbiest and
G. Koeckelberghs, Macromolecules, 2010, 43, 3794–3800.
9 (a) H. Goto, E. Yashima and Y. Okamoto, Chirality, 2000, 12,
396–399; (b) H. Goto, Y. Okamoto and E. Yashima, Macro-
molecules, 2002, 35, 4590–4601.
In conclusion, we found a unique chirality induction in a
metal-induced achiral PT aggregate bearing an achiral oxazoline
residue by chiral amines. In addition, the supramolecular
chirality is also transferred from the chiral PT to achiral PT
chains when specific metal salts are used as an intermolecular
cross-linking agent via coordination to the functional pendant
residues. The present metal-induced chiral aggregates derived
from the PEOPT and P1 mixtures assisted by chiral PT in a
good solvent were completely different from their chiral aggre-
gates induced in poor solvents via well-accepted p-stacked,
interchain interactions (Fig. S8, ESIz). We expect that the
metal-induced chiral supra-molecular aggregates of the achiral
10 (a) E. Yashima, H. Goto and Y. Okamoto, Macromolecules, 1999, 32,
7942–7945; (b) H. Goto, Y. Okamoto and E. Yashima, Chem.–Eur.
J., 2002, 8, 4027–4036.
11 H. Goto and E. Yashima, J. Am. Chem. Soc., 2002, 124,
7943–7949.
12 The ICD intensity and sign of the ternary mixtures were independent
of the mixing orders of P1, Ag, and chiral amines.
13 (a) M. M. Green, M. P. Reidy, R. D. Johnson, G. Darling,
D. J. O’Leary and G. Willson, J. Am. Chem. Soc., 1989, 111,
6452–6454; (b) M. M. Green, J.-W. Park, T. Sato, A. Teramoto,
S. Lifson, R. L. B. Selinger and J. V. Selinger, Angew. Chem., Int.
Ed., 1999, 38, 3139–3154.
14 (a) T. Nakano and Y. Okamoto, Chem. Rev., 2001, 101,
4013–4038; (b) E. Yashima, K. Maeda, H. Iida, Y. Furusho and
K. Nagai, Chem. Rev., 2009, 109, 6102–6211.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3291–3293 3293