reaction was implemented by the addition of the reagents
to this same flask under an inert atmosphere.
Scheme 1. Indoles from Amines and R-Aryl Ketones
Table 1. Imine Formation
entry
additive
MgSO4
solvent
PhMe
SM/iminea
1b
2
3:97
MgSO4
PhMe
70:30
20:80
4:96
˚
3
3 A mol sieves
PhMe
4
p-TsOH (0.1 equiv)
p-TsOH (0.1 equiv)
PhMe (-H2O)c
PhH (-H2O)c
5
1:99
We envisioned that a reversal of these steps, namely
dehydrative formation of imine 5, followed by arylation
of the intermediate imine or enamine, would be more suc-
cessful. We report herein facile, scalable conditions for
dehydrative imine formation and copper-catalyzed indole
formation from a variety of amines and R-aryl carbonyl
compounds.
a Measured by GC. Each entry is a single experiment. b 2-(2-
Bromophenyl)acetaldehyde used. c DeanÀStark apparatus used to re-
move water.
Initial attempts at intramolecular imino-arylation of the
ketimine followed protocols using CuI and K3PO4 in
DMF.13,15 However, hydrolysis proved to be competing
with indole formation (Table 2, entry 1). Finely ground
and anhydrous base proved to be essential for an excellent
yield of the indole (entry 2). Other bases were less effective
(entries 3 and 4). Unfortunately, many attempts to effect
As the formation of imines from ketones is not a trivial
process, we first examined several approaches for the
condensation reaction. While magnesium sulfate is suffi-
cient to form an imine from an aldehyde (Table 1, entry 1),
it was ineffective for the complete condensation to the
imine from the corresponding ketone (entry 2). Stronger in
situ dehydrating agents also proved unsatisfactory (entry 3).
Fortunately, a catalytic amount of acid and azeotropic
removal of water turned out to be simple and effective
(entries 4 and 5). Care had to be taken not to expose the
ketimines to the atmosphere, as hydrolysis back to the
ketone is quite rapid. Concentration of the reaction by
distillative removal of the solvent without opening the
reaction vesselassured thatthe imine was obtainedwithout
hydrolysis. While toluene was effective for imine forma-
tion, the distillation of benzene was more facile and its
lower boiling point allows amines with lower molecular
weights to be used without loss. Toluene could still be used
for more difficult imine formations. The next stage of the
(10) (a) Johnson, J. R.; Buchanan, J. B.; Gliotoxin, I. X. J. Am. Chem.
Soc. 1951, 73, 3749. (b) Sereda, A. V.; Sukhov, I. E.; Lapa, G. B.;
Zolotarev, B. M.; Yartseva, I. V.; Tolkachev, O. N. Zhurnal Organi-
cheskoi Khimii 1994, 30, 1782. (c) Wakim, S.; Bouchard, J.; Blouin, N.;
Michaud, A.; Leclerc, M. Org. Lett. 2004, 6, 3413. (d) Barberis, C.;
Gordon, T. D.; Thomas, C.; Zhang, X.; Cusack, K. P. Tetrahedron Lett.
2005, 46, 8877. (e) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am.
Chem. Soc. 2006, 128, 7136. (f) Akenga, T. O.; Read, R. W. South
African J. Chem. 2007, 60, 11. (g) (1) Melkonyan, F. S.; Topolyan, A. P.;
Karchava, A. V.; Yurovskaya, M. A. Chem. Heterocycl. Compd. 2008,
44, 1288. (h) Selander, N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.;
Fokin, V. V. J. Am. Chem. Soc. 2012, 134, 14670.
(11) For indoline examples, see: (a) Yamada, K.; Kurokawa, T.;
Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630. (b)
Melkonyan, F.; Topolyan, A.; Yurovskaya, M.; Karchava, A. Eur. J.
Org. Chem. 2008, 2008, 5952.
(12) (a) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004,
248, 2337. (b) Fischer, C.; Koenig, B. Beilstein J. Org. Chem. 2011, 7, 59.
(c) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
(13) (a) Boente, J.; Castedo, L.; Delera, A.; Saa, J.; Suau, R.; Vidal,
M. Tetrahedron Lett. 1983, 24, 2295. (b) Delera, A.; Saa, J.; Suau, R.;
Castedo, L. J. Heterocyclic Chem. 1987, 24, 613. (c) Ambros, R.;
Schneider, M. R.; Angerer, von, S. J. Med. Chem. 1990, 33, 153. (d)
Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H.
J. Org. Chem. 1999, 64, 6583. (e) Orito, K.; Harada, R.; Uchiito, S.;
Tokuda, M. Org. Lett. 2000, 2, 1799. (f) Androsov, D. A.; Neckers, D. C.
J. Org. Chem. 2007, 72, 5368. (g) Schirok, H. Synthesis 2008, 2008, 1404.
(h) Yan, Q.; Luo, J.; Zhang-Negrerie, D.; Li, H.; Qi, X.; Zhao, K. J. Org.
Chem. 2011, 76, 8690.
(8) (a) Polossek, T.; Ambros, R.; von Angerer, S.; Brandl, G.;
Mannschreck, A.; von Angerer, E. J. Med. Chem. 1992, 35, 3537. (b)
Goldbrunner, M.; Loidl, G.; Polossek, T.; Mannschreck, A.; von
Angerer, E. J. Med. Chem. 1997, 40, 3524. (c) Watanabe, M.; Yamamoto,
T.; Nishiyama, M. Angew. Chem., Int. Ed. 2000, 39, 2501. (d) Yamazaki, K.;
Nakamura, Y.; Kondo, Y. J. Chem. Soc., Perkin Trans. 1 2002, 2137. (e)
Yamazaki, K.; Nakamura, Y.; Kondo, Y. J. Org. Chem. 2003, 68, 6011. (f)
ꢀ ꢀ ꢀ
Vincze, Z.; Bıro, A.; Csekei, M.; Timari, G.; Kotschy, A. Synthesis 2006,
´
(14) (a) Chen, C.-Y.; Dormer, P. G. J. Org. Chem. 2005, 70, 6964. (b)
2006, 1375. (g) van den Hoogenband, A.; Lange, J. H. M.; Iwema-Bakker,
W. I.; Hartog, den, J. A. J.; van Schaik, J.; Feenstra, R. W.; Terpstra, J. W.
Tetrahedron Lett. 2006, 47, 4361. (h) Fletcher, A. J.; Bax, M. N.; Willis,
Carril, M.; SanMartin, R.; Tellitu, I.; Domı
1467.
(15) (a) Rivero, M. R.; Buchwald, S. L. Org. Lett. 2007, 9, 973. (b)
Martın, R.; Larsen, C. H.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007,
9, 3379.
(16) (a) Martı
´
nguez, E. Org. Lett. 2006, 8,
ꢀ
M. C. Chem. Commun. 2007, 4764. (i) Barluenga, J.; Jimenez-Aquino, A.;
ꢀ
Aznar, F.; Valdes, C. J. Am. Chem. Soc. 2009, 131, 4031. (j) Ackermann, L.;
´
Sandmann, R.; Kondrashov, M. Synlett 2009, 2009, 1219. (k) Ackermann,
L.; Sandmann, R.; Schinkel, M.; Kondrashov, M. V. Tetrahedron 2009, 65,
8930. (l) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676. (m)
Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416. (n)
Lavery, C. B.; McDonald, R.; Stradiotto, M. Chem. Commun. 2012, 48,
7277.
(9) (a) Yamagishi, M.; Nishigai, K.; Ishii, A.; Hata, T.; Urabe, H.
Angew. Chem., Int. Ed. 2012, 51, 6471. (b) Wei, Y.; Deb, I.; Yoshikai, N.
J. Am. Chem. Soc. 2012, 134, 9098. (c) Shi, Z.; Glorius, F. Angew. Chem.,
Int. Ed. 2012, 51, 9220.
´
n, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9,
5521. (b) Jones, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem.
2007, 72, 7968. (c) Minatti, A.; Buchwald, S. L. Org. Lett. 2008, 10, 2721.
(d) Tye, J. W.; Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F.
J. Am. Chem. Soc. 2008, 130, 9971. (e) Periasamy, M.; Vairaprakash, P.;
Dalai, M. Organometallics 2008, 27, 1963. (f) Larsson, P.-F.; Correa, A.;
Carril, M.; Norrby, P.-O.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48,
5691. (g) Tsvelikhovsky, D.; Buchwald, S. L. J. Am. Chem. Soc. 2011,
133, 14228.
B
Org. Lett., Vol. XX, No. XX, XXXX