P.P. Chakrabarty et al. / Polyhedron 35 (2012) 108–115
115
of the two Cu(II)(L3)2 complexes that are organized by Na+ ion
keeping itself at the core of the complex. It is interesting to note
that the perchlorate ion in this case cannot coordinate to the Na+
ion; instead it remains as counterion outside the coordination
sphere. Another interesting feature of complex 3 is that, in the
supramolecular assembly of the trinuclear complexes the weak
forces involving the Cu–ligand chelate rings is absent. Here a dif-
ferent supramolecular organization is mainly governed by disper-
sion forces (Fig. S3, Supplementary material) having a layered
architecture with grooves accommodating perchlorate counter
ions. This is expected as in this case the two chelate rings around
Cu(II) ion are heavily twisted with respect to each other, having
a non-planar geometry of the coordination plane.
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)
1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary
data associated with this article can be found, in the online version,
References
[1] R. Bogue, Assem. Autom. 28 (2008) 211.
[2] J.A. Thomas, in: J.L. Atwood, J.W. Steed (Eds.), Encyclopedia of Supramolecular
Chemistry, CRC Press, Boca Raton, FL, 2004, p. 1248.
[3] M. Andruh, D.G. Branzea, R. Gheorghe, A.M. Madalan, CrystEngComm 11
(2009) 2571.
[4] B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629.
[5] D. Braga, L. Maini, M. Polito, L. Scaccianoce, G. Cojazzi, F. Grepioni, Coord.
Chem. Rev. 225 (2001) 216.
4. Conclusion
[6] A.J. Blake, N.R. Champness, P. Hubberstey, M.A. Withersby, M. Schröder, Coord.
Chem. Rev. 183 (1999) 117.
The present study reveals that sodium ion assisted self-assembly
of square planar Cu(II)-Schiff base complexes may be a unique fea-
ture that can be utilized in the design of polynuclear coordination
complexes. Also this class of complexes can be intelligently
engineered through ligand modification so that they can reveal
many finer details of weak intermolecular forces especially the
[7] J.-P. Sauvage (Ed.), Transition Metals in Supramolecular Chemistry:
Perspectives in Supramolecular Chemistry, vol. 5, Wiley, London, 1999.
[8] G.R. Desiraju (Ed.), The Crystal as a Supramolecular Entity: Perspectives in
Supramolecular Chemistry, vol. 2, Wiley, London, 1996.
[9] D. Braga, F. Grepioni, A.G. Orpen, Crystal Engineering: From Molecules and
Crystals to Materials, Kluwer Academic, Dordrecht, The Netherlands, 1999.
[10] J. Hamblin, S.P. Argent, A.J. Blake, C. Wilson, N.R. Champness, CrystEngComm
12 (2008) 1782.
[11] S. Bianketti, A.J. Blake, C. Wilson, P. Hubberstey, N.R. Champness, M. Schröder,
CrystEngComm 5 (2009) 763.
[12] T.E. Keyes, R.J. Forster, A.M. Bond, W. Miao, J. Am. Chem. Soc. 123 (2001) 2877.
[13] H. Koshima, H. Miyamoto, I. Yagi, K. Uosaki, Cryst. Growth Des. 4 (2004) 807.
[14] H. Koshima, M. Naganoand, T. Asahi, J. Am. Chem. Soc. 127 (2005) 2455.
[15] H. Masui, Coord. Chem. Rev. 957 (2001) 219.
p-interaction involving the metal-chelate rings. Complexes 1 and 2
are two such examples that reveal how a slight modification in the
ligand structure can influence the coordinative behavior of the cop-
per–ligand complexes towards Na+ metal ion as well as the weak
forces that operate among them. An increase in ligand bulkiness
due to the presence of ethoxy group at the terminal position of the
ligand may cause exclusion of water from the sodium coordination
[16] D.N. Sredojevic, Z.D. Tomic, S.D. Zaric, Cryst. Growth Des. 10 (2010) 3901.
[17] S.L. Childs, L.J. Chyall, J.T. Dunlap, V.N. Smolenskaya, B.C. Stahly, G.P. Stahly, J.
Am. Chem. Soc. 126 (2004) 13335.
[18] B. Olenik, R. Boese, R. Sustmann, Cryst. Growth Des. 3 (2003) 175.
[19] D.A. Dougherty, Science 271 (1996) 163.
sphere. More planarity of Cu–ligand chelate ring favors Cuꢀꢀꢀ
p (me-
tal-chelate)-interaction in 2 which does not exist in 1. The ligand
in the complex 3 which is widely different from that used in 1 and
2 was designed to test the unique self-assembly feature of Na+ ion.
The uniqueness of this Na+ assisted self-assembly is evident from
3, where to maintain this assembly the planarity of the Cu(II)(L3)2
complex is compromised. In 3, the perchlorate ion could not enter
the Na+ coordination sphere due to the assembly of Cu(II)(L3)2 com-
plexes around the Na+ ion giving rise to a metalla crown effect. In
summary present study reveals the unique nature of the self-assem-
bly of square-planar Cu(II)-Schiff base complexes around Na+ and
hints that other alkali metals and transition metal-Schiff base com-
plexes may be designed utilizing this path. Work in this direction is
in progress in our laboratory.
[20] D.A. Dougherty, Chem. Rev. 97 (1997) 1303.
[21] J.A. Bis, O.L. McLaughlin, P. Vishweshwar, M.J. Zaworotko, Cryst. Growth Des. 6
(2006) 2648.
[22] S. Gambarotta, F. Arena, C. Floriani, P.F. Zanazzi, J. Am. Chem. Soc. 104 (1982)
5082.
[23] S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Chem. Soc., Chem.
Commun. (1982) 756.
[24] S. Gambarotta, F. Urso, C. Floriani, A. Chiesi-Villa, C. Guastini, Inorg. Chem. 22
(1983) 3966.
[25] H. Miyasaka, N. Matsumoto, H. Okawa, N. Re, E. Gallo, C. Floriani, J. Am. Chem.
Soc. 118 (1996) 981.
[26] N. Re, E. Gallo, C. Floriani, H. Miyasaka, N. Matsumoto, Inorg. Chem. 35 (1996)
5964.
[27] D. Cunningham, P. McArdle, M. Mitchell, N.N. Chonchubhair, M.O. Gara, Inorg.
Chem. 39 (2000) 1639.
[28] Y. Sui, D.-P. Li, C.-H. Li, X.-H. Zhou, T. Wu, X.-Z. You, Inorg. Chem. 49 (2010)
1286.
[29] M. Das, S. Chatterjee, S. Chattopadhyay, Inorg. Chem. Commun. 14 (2011)
1337.
Acknowledgments
[30] APEX 2, Version 2.2, Bruker AXS Inc., Madison, WI, 2006.
[31] G.M. Sheldrick, SADABS, Programs for Area Detector Adsorption Correction,
Financial support from DST (Sanction No. SR/FT/CS-060/2009)
and UGC (Sanction No. F.38-5/2009(SR)), New Delhi to S.S. are
gratefully acknowledged.
Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.
[32] G.M. Sheldrick, SHELXTL, Version 5.1, Program for the Solution and Refinement of
Crystal Structures, Bruker AXS Inc., Madison, WI, 1999.
[33] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
[34] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[35] M.C. Etter, J.C. MacDonald, J. Bernstein, Acta Crystallogr., Sect. B 46 (1990) 256.
Appendix A. Supplementary data
CCDC 826103, 826104, and 826105 contains the supplementary
crystallographic data for 1, 2, and 3, respectively. These data can be