Table
prefunctionalized arenes
3
Cascade diarylation of N-phenylacetamides with non-
In conclusion, we developed a new highly efficient atom-
economical, cascade, oxidative intermolecular process
of introduction of two aryl groups in aniline derivatives. The
desired products were formed in a highly regioselective
manner under metal-free conditions at ambient temperature.
The developed transformation was realized by using a
single environmental friendly reagent—para-tolyliodonium
diacetate.
We gratefully acknowledge Prof. Dr Herbert Waldmann for
his generous support
Notes and references
1 For reviews, see: (a) F. Monnier and M. Taillefer, Angew. Chem.,
Int. Ed., 2009, 48, 6954; (b) J. F. Hartwig, Nature, 2008, 455, 314;
(c) R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874;
(d) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem.,
Int. Ed., 2005, 44, 4442; (e) A. C. Frisch and M. Beller, Angew.
Chem., Int. Ed., 2005, 44, 674; (f) S. V. Ley and A. W. Thomas,
Angew. Chem., Int. Ed., 2003, 42, 5400.
2 For selected reviews on C–H activation, see: (a) C. S. Yeung and
V. M. Dong, Chem. Rev., 2011, 111, 1215; (b) S. H. Cho, J. Y. Kim,
J. Kwak and S. Chang, Chem. Soc. Rev., 2011, 40, 5068;
(c) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147;
(d) L. M. Xu, B. J. Li, Z. Yang and Z. J. Shi, Chem. Soc. Rev., 2010,
39, 712; (e) L. Ackermann, Chem. Rev., 2011, 111, 1315;
(f) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev.,
2010, 110, 624; (g) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540;
(h) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew. Chem.,
Reaction conditions: aniline derivative 1 (0.2 mmol, 1 equiv.), arene
(1.0 mmol), 4-MeC6H4I(OAc)2 (0.54 mmol) in HFIP (0.2 M). a Using
Int. Ed., 2009, 48, 5094; (i) J. Wencel-Delord, T. Droge, F. Liu and
F. Glorius, Chem. Soc. Rev., 2011, 40, 4740.
¨
b
arene (2.0 mmol), 4-MeC6H4I(OAc)2 (0.8 mmol). In the mixture
c
DCM/HFIP (1/1) 0.1 M. Regioisomer ratio is 1 : 1.2.
3 (a) K. Morimoto, N. Yamaoka, C. Ogawa, T. Nakae, H. Fujioka,
T. Dohi and Y. Kita, Org. Lett., 2010, 12, 3804; (b) Y. H. Gu and
D. W. Wang, Tetrahedron Lett., 2010, 51, 2004; (c) E. Faggi,
R. M. Sebastian, R. Pleixats, A. Vallribera, A. Shafir,
A. Rodriguez-Gimeno and C. R. de Arellano, J. Am. Chem. Soc.,
2010, 132, 17980; (d) T. Dohi, M. Ito, N. Yamaoka, K. Morimoto,
H. Fujioka and Y. Kita, Angew. Chem., Int. Ed., 2010, 49, 3334;
(e) Y. Kita, K. Morimoto, M. Ito, C. Ogawa, A. Goto and T. Dohi,
J. Am. Chem. Soc., 2009, 131, 1668; (f) T. Dohi, M. Ito,
N. Yamaoka, K. Morimoto, H. Fujioka and Y. Kita, Tetrahedron,
2009, 65, 10797; (g) T. Dohi, M. Ito, K. Morimoto, M. Wata and
Y. Kita, Angew. Chem., Int. Ed., 2008, 47, 1301; (h) A. Jean,
J. Cantat, D. Berard, D. Bouchu and S. Canesi, Org. Lett., 2007,
9, 2553; (i) T. Dohi, K. Morimoto, M. Ito and Y. Kita, Synthesis,
2007, 2913.
materials and can be aminated under metal free conditions
(see ESIw, Scheme S1).
Mechanistically, we assume that the oxidation of N-phenyl-
acetamides (1) led to the formation of the nitrenium ion (A)
which is stabilized by charge delocalization to the carbenium
ion (C) (see ESIw, Scheme S2). Both ions A and C may react
with nucleophilic arenes giving products of arylation. The
electron-deficient ion C is attacked by the nucleophilic arene
giving N-(biphenyl-4-yl)acetamides (4), while arylation of
intermediate (A) leads to formation of a mono-N-arylation
product (5). We assume that under optimized reaction condi-
tions, the extensively charge delocalized intermediate C is
preferred although this depends on the structure of derivatives
1. Product 4 is oxidized by the second equivalent of iodine(III)
reagent to give nitrenium ion (D), which is involved in the
electrophilic aromatic substitution with the arene to yield
product 3. We found that in the presence of radical scavenger,
the yield of product 3 was not decreased. This finding indicates
that radical species do not take part in the diarylation process.
In a control experiment, anilide (5) did not lead to product 3
under identical oxidative reaction conditions. Furthermore,
application of para-substituted aniline derivatives led to
mono-N-arylation products. This result indicates that the
developed process is implemented via a conserved reaction
sequence where the first step is the formation of the C–C bond
and the second step is N-arylation.
4 A. P. Antonchick, R. Samanta, K. Kulikov and J. Lategahn, Angew.
Chem., Int. Ed., 2011, 50, 8605.
5 For simultaneous results from different groups, see: (a) H. J. Kim,
J. Kim, S. H. Cho and S. Chang, J. Am. Chem. Soc., 2011,
133, 16382; (b) A. A. Kantak, S. Potavathri, R. A. Barham,
K. M. Romano and B. L. DeBoef, J. Am. Chem. Soc., 2011,
133, 19960.
6 Only para-selective iodine(III) mediated hetero-functionalization is
known, see (a) N. Itoh, T. Sakamoto, E. Miyazawa and
Y. Kikugawa, J. Org. Chem., 2002, 67, 7424; (b) H. Liu, X. Wang
and Y. Gu, Org. Biomol. Chem., 2011, 9, 1614; (c) H.-L. Wei,
T. Piou, J. Dufour, L. Neuville and J. Zhu, Org. Lett., 2011,
13, 2244; (d) H. Liu, Y. Z. Xie and Y. H. Gu, Tetrahedron Lett.,
2011, 52, 4324.
7 For metal catalysed para-selective arylation, see: C. L. Ciana,
R. J. Phipps, J. R. Brandt, F. M. Meyer and M. J. Gaunt, Angew.
Chem., Int. Ed., 2011, 50, 458.
8 For reviews on hypervalent iodine(III), see: (a) T. Wirth, Angew.
Chem., Int. Ed., 2005, 44, 3656; (b) V. V. Zhdankin and P. J. Stang,
Chem. Rev., 2008, 108, 5299; (c) T. Dohi and Y. Kita, Chem.
Commun., 2009, 2073; (d) V. V. Zhdankin, ARKIVOC, 2009, (i), 1.
c
3196 Chem. Commun., 2012, 48, 3194–3196
This journal is The Royal Society of Chemistry 2012