ACS Medicinal Chemistry Letters
Letter
(21) Taylorson, C. J.; Eggelte, H. J.; Tarragona-Fiol, A.; Rabin, B. R.;
Boyle, F. T.; Hennam, J. F.; Blakey, D. C.; Marsham, P. R.; Heaton, D.
W.; Davies, D. H.; Slater, A. M.; Hennequin, L. F. A. Chemical
compounds. U.S. Patent No. 5985281, 1999.
(22) Beaucage, S. L.; Caruthers, M. H. Deoxynucleoside phosphor-
amiditesA new class of key intermediates for deoxypolynucleotide
synthesis. Tetrahedron Lett. 1981, 22, 1859−1862.
(23) Caruthers, M. H. A brief review of DNA and RNA chemical
synthesis. Biochem. Soc. Trans. 2011, 39, 575−580.
(24) Stella, V. J.; Nti-Addae, K. W. Prodrug strategies to overcome
poor water solubility. Adv. Drug Delivery Rev. 2007, 59, 677−94.
(25) Wagner, C. R.; Iyer, V. V.; McIntee, E. J. Pronucleotides:
Toward the in vivo delivery of antiviral and anticancer nucleotides.
Med. Res. Rev. 2000, 20, 417−51.
(26) Micklefield, J. Backbone modification of nucleic acids: Synthesis,
structure and therapeutic applications. Curr. Med. Chem. 2001, 8,
1157−79.
ABBREVIATIONS
■
HT, hydroxytamoxifen; MES, 2-(N-morpholino)ethanesulfonic
acid; RNase 1, human pancreatic ribonuclease; U>p, uridine
2′,3′-cyclic phosphate; UpHT, uridine 3′-(4-hydroxytamoxifen
phosphate)
REFERENCES
■
(1) Wang, B.; Siahaan, T.; Soltero, R. Drug Delivery: Principles and
Applications; John Wiley & Sons: Hoboken, NJ, 2005.
(2) Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.;
Jarvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications.
Nat. Rev. Drug Discovery 2008, 7, 255−270.
(3) Gennaro, A. R. Remington: The Science and Practice of Pharmacy,
21st ed.; Lippincott Williams & Wilkins: Baltimore, MD, 2005.
(4) Kratz, F.; Muller, I. A.; Ryppa, C.; Warnecke, A. Prodrug
strategies in anticancer chemotherapy. ChemMedChem 2008, 3, 20−
53.
(27) Schultz, C. Prodrugs of biologically active phosphate esters.
Bioorg. Med. Chem. 2003, 11, 885−898.
(28) Anastasi, C.; Quelever, G.; Burlet, S.; Garino, C.; Souard, F.;
Kraus, J. L. New antiviral nucleoside prodrugs await application. Curr.
Med. Chem. 2003, 10, 1825−43.
(5) Langer, R. New methods of drug delivery. Science 1990, 249,
1527−1533.
(6) Testa, B.; Mayer, J. M. Hydrolysis in Drug and Prodrug
Metabolism: Chemistry, Biochemistry, and Enzymology; Wiley-VCH:
(29) Venturoli, D.; Rippe, B. Ficoll and dextran vs. globular proteins
as probes for testing glomerular permselectivity: Effects of molecular
size, shape, charge, and deformability. Am. J. Physiol.-Renal 2005, 288,
F605−F613.
Zurich, Switzerland, 2003.
(7) Brown, D. M. Drug Delivery Systems in Cancer Therapy; Humana
Press: Totowa, NJ, 2004.
̈
(8) Sorrentino, S. The eight human “canonical” ribonucleases:
Molecular diversity, catalytic properties, and special biological actions
of the enzyme proteins. FEBS Lett. 2010, 584, 2194−2200.
(9) Su, A. I.; Wiltshire, T.; Batalov, S.; Lapp, H.; Ching, K. A.; Block,
D.; Zhang, J.; Soden, R.; Hayakawa, M.; Kreiman, G.; Cooke, M. P.;
Walker, J. R.; Hogenesch, J. B. A gene atlas of the mouse and human
protein-encoding transcriptomes. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 6062−6067.
(30) Owens, D. E. 3rd; Peppas, N. A. Opsonization, biodistribution,
and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006,
307, 93−102.
(31) Hecker, S. J.; Erion, M. D. Prodrugs of phosphates and
phosphonates. J. Med. Chem. 2008, 51, 2328−2345.
(32) Khandazhinskaya, A.; Matyugina, E.; Shirokova, E. Anti-HIV
therapy with AZT prodrugs: AZT phosphonate derivatives, current
state and prospects. Expert Opin. Drug Metab. Toxicol. 2011, 6, 701−
714.
(10) The ribonucleolytic activity in serum is attributable to RNase 1.
Its concentration there is 156 units/mL with 1 unit of activity arising
from 2.6 ng of enzyme. Weickmann, J. L.; Olson, E. M.; Glitz, D. G.
Immunological assay of pancreatic ribonuclease in serum as an
indicator of pancreatic cancer. Cancer Res. 1984, 44, 1682−1687.
(33) Desta, Z.; Ward, B. A.; Soukhova, N. V.; Flockhart, D. A.
Comprehensive evaluation of tamoxifen sequential biotransformation
by the human cytochrome P450 system in vitro: Prominent roles for
CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 2004, 310, 1062−1075.
(34) Coezy, E.; Borgna, J. L.; Rochefort, H. Tamoxifen and
metabolites in MCF7 cells: Correlation between binding to estrogen
receptor and inhibition of cell growth. Cancer Res. 1982, 42, 317−323.
(35) O'Regan, R. M.; Jordan, V. C. The evolution of tamoxifen
therapy in breast cancer: Selective oestrogen-receptor modulators and
downregulators. Lancet Oncol. 2002, 3, 207−214.
(36) Powles, T. J. Anti-oestrogenic chemoprevention of breast
cancer-the need to progress. Eur. J. Cancer 2003, 39, 572−579.
(37) Fisher, B.; Costantino, J. P.; Wickerham, D. L.; Cecchini, R. S.;
Cronin, W. M.; Robidoux, A.; Bevers, T. B.; Kavanah, M. T.; Atkins, J.
N.; Margolese, R. G.; Runowicz, C. D.; James, J. M.; Ford, L. G.;
Wolmark, N. Tamoxifen for the prevention of breast cancer: Current
status of the National Surgical Adjuvant Breast and Bowel Project P-1
study. J. Natl. Cancer Inst. 2005, 97, 1652−1662.
(38) Bergman, L.; Beelen, M. L.; Gallee, M. P.; Hollema, H.;
Benraadt, J.; van Leeuwen, F. E. Risk and prognosis of endometrial
cancer after tamoxifen for breast cancer. Comprehensive cancer
centres' ALERT group. Assessment of liver and endometrial cancer
risk following tamoxifen. Lancet 2000, 356, 881−887.
(39) Decensi, A.; Robertson, C.; Viale, G.; Pigatto, F.; Johansson, H.;
Kisanga, E. R.; Veronesi, P.; Torrisi, R.; Cazzaniga, M.; Mora, S.;
Sandri, M. T.; Pelosi, G.; Luini, A.; Goldhirsch, A.; Lien, E. A.;
Veronesi, U. A randomized trial of low-dose tamoxifen on breast
cancer proliferation and blood estrogenic biomarkers. J. Natl. Cancer
Inst. 2003, 95, 779−790.
́
(11) Also see Landre, J. B. P.; Hewett, P. W.; Olivot, J.-M.; Friedl, P.;
Sachinidis, A.; Moenner, M. Human endothelial cells selectively
express large amounts of pancreatic-type ribonuclease (RNase 1). J.
Cell. Biochem. 2002, 86, 540−552.
(12) Raines, R. T. Ribonuclease A. Chem. Rev. 1998, 98, 1045−1065.
́
(13) Cuchillo, C. M.; Nogues, M. V.; Raines, R. T. Bovine pancreatic
ribonuclease: Fifty years of the first enzymatic reaction mechanism.
Biochemistry 2011, 50, 7835−7841.
(14) Markham, R.; Smith, J. D. The structure of ribonucleic acids. 1.
Cyclic nucleotides produced by ribonuclease and by alkaline
hydrolysis. Biochem. J. 1952, 52, 552−557.
(15) Cuchillo, C. M.; Pares
́
, X.; Guasch, A.; Barman, T.; Travers, F.;
, M. V. The role of 2′,3′-cyclic phosphodiesters in the bovine
pancreatic ribonuclease A catalysed cleavage of RNA: Intermediates or
products? FEBS Lett. 1993, 333, 207−210.
Nogues
́
(16) Thompson, J. E.; Venegas, F. D.; Raines, R. T. Energetics of
catalysis by ribonucleases: Fate of the 2′,3′-cyclic phosphodiester
intermediate. Biochemistry 1994, 33, 7408−7414.
(17) Davis, A. M.; Regan, A. C.; Williams, A. Experimental charge
measurement at leaving oxygen in the bovine ribonuclease A catalyzed
cyclization of uridine 3′-phosphate aryl esters. Biochemistry 1988, 27,
9042−9047.
(18) Witmer, M. R.; Falcomer, C. M.; Weiner, M. P.; Kay, M. S.;
Begley, T. P.; Ganem, B.; Scheraga, H. A. U-3′-BCIP: A chromogenic
substrate for the detection of RNase A in recombinant DNA
expression systems. Nucleic Acids Res. 1991, 19, 1−4.
(19) Thompson, J. E.; Raines, R. T. Value of general acid−base
catalysis to Ribonuclease A. J. Am. Chem. Soc. 1994, 116, 5467−5468.
(20) Stowell, J. K.; Widlanski, T. S.; Kutateladze, T. G.; Raines, R. T.
Mechanism-based inactivation of ribonuclease A. J. Org. Chem. 1995,
60, 6930−6936.
(40) Vitseva, O.; Flockhart, D. A.; Jin, Y.; Varghese, S.; Freedman, J.
E. The effects of tamoxifen and its metabolites on platelet function and
release of reactive oxygen intermediates. J. Pharmacol. Exp. Ther. 2005,
312, 1144−1150.
271
dx.doi.org/10.1021/ml2002554 | ACS Med. Chem. Lett. 2012, 3, 268−272