M. Yus et al. / Tetrahedron Letters 43 (2002) 7205–7207
7207
easily prepared. In addition, cyclization of some diols 2
under acidic conditions affords substituted phthalans 3.
3. For reviews, see: (a) Maercker, A. In Ref. 2b, Chapter 11;
(b) Foubelo, F.; Yus, M. Trends Org. Chem. 1998, 7,
1–26.
4. For the first account of this topic from our group, see: (a)
Yus, M.; Ramo´n, D. J. J. Chem. Soc., Chem. Commun.
1991, 398–400. For reviews, see: (b) Yus, M. Chem. Soc.
Rev. 1996, 25, 155–161; (c) Ramo´n, D. J.; Yus, M. Eur. J.
Org. Chem. 2000, 225–237; (d) Yus, M. Synlett 2001,
1197–1205; (e) Yus, M.; Ramo´n, D. J. Latv. J. Chem.
2002, 79–92. For mechanistic studies, see: (f) Yus, M.;
Herrera, R. P.; Guijarro, A. Tetrahedron Lett. 2001, 42,
3455–3458; (g) Yus, M.; Herrera, R. P.; Guijarro, A.
Chem. Eur. J. 2000, 8, 2574–2584. For a polymer sup-
ported arene-catalysed version of this reaction, see: (h)
Go´mez, C.; Ruiz, S.; Yus, M. Tetrahedron Lett. 1998, 39,
1397–1400; (i) Go´mez, C.; Ruiz, S.; Yus, M. Tetrahedron
1999, 55, 7017–7026; (j) Arnauld, T.; Barrett, A. G. M.;
Hopkins, B. T. Tetrahedron Lett. 2002, 43, 1081–1083; (k)
Yus, M.; Go´mez, C.; Candela, P. Tetrahedron 2002, 58,
6207–6210. From a previous paper on this topic from our
laboratory, see: (e) Yus, M.; Ramo´n, D. J.; Go´mez, I.
Tetrahedron 2002, 58, 5163–5172.
Typical procedure for compounds 2: To a blue suspen-
sion of lithium powder (100 mg, 14 mmol) an DTBB
(40 mg, 0.15 mmol) in THF (4 mL) was added thi-
anthrene (430 mg, 2 mmol) at −90°C, and the resulting
mixture was stirred for 45 min at the same temperature.
Then a carbonyl compound (2.1 mmol) was added and
it was stirred for 45 min at −90°C. The second carbonyl
compound (2.4 mmol) was then added allowing the
temperature to rise to −78°C for 30 min, the resulting
mixture was then hydrolysed with water (10 mL). After
extracting with ether (3×20 mL), the organic layer was
dried over Na2SO4 and evaporated (15 Torr) giving a
residue, which was purified by column chromatography
(silica gel, hexane/ethyl acetate) to yield the pure title
compounds 2.
5. See, for instance: (a) Alonso, F.; Lorenzo, E.; Yus, M.
Tetrahedron Lett. 1998, 39, 3303–3306; (b) Foubelo, F.;
Yus, M. Tetrahedron Lett. 1999, 40, 743–746; (c)
Lorenzo, E.; Alonso, F.; Yus, M. Tetrahedron Lett. 2000,
41, 1661–1665; (d) Foubelo, F.; Saleh, S. A.; Yus, M. J.
Org. Chem. 2000, 65, 3478–3483; (e) Foubelo, F.; Yus,
M. Tetrahedron Lett. 2000, 41, 5047–5051.
Acknowledgements
6. For a review, see: (a) Yus, M.; Foubelo, F. Rev. Het-
eroatom Chem. 1997, 17, 73–107. For a previous paper on
this topic from our laboratory, see: (b) Yus, M.; Foubelo,
F.; Ferra´ndez, J. V. Chem. Lett. 2002, 726–727.
7. For reviews, see: (a) Na´jera, C.; Yus, M. Trends Org.
Chem. 1991, 2, 155–181; (b) Na´jera, C.; Yus, M. Recent
Res. Devel. Org. Chem. 1997, 1, 67–96; (c) Na´jera, C.;
Yus, M. Curr. Org. Chem., in press. For a more general
review, see: (d) Boudier, A.; Bromm, L. O.; Lotz, M.;
Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4414–4435.
8. The formation of intermediates I and II was demon-
strated by hydrolysis of both systems giving the expected
compounds resulting from a lithium–hydrogen exchange
(see Ref. 6b).
9. The reaction with the second electrophile could take
place either in a two-step process (tandem lithiation–SE
reaction) or in a Barbier-type process (lithiation in the
presence of the electrophile). For a monograph, see: (a)
Blomberg, C. The Barbier Reaction and Related Pro-
cesses; Springer: Berlin, 1993. For a review, see: (b)
Alonso, F.; Yus, M. Recent Res. Devel. Org. Chem. 1997,
1, 397–436.
This work was generously supported by the Direccio´n
General de Investigacio´n of the current Spanish Minis-
terio de Educacio´n, Cultura y Deportes (MECD; grant
no. PB97-0133). J.V.F. thanks the Generalitat Valen-
ciana for a scholarship.
References
1. For monographs, see: (a) Wakefield, B. J. Organomagne-
sium Methods in Organic Synthesis; Academic Press: Lon-
don, 1995; (b) Handbook of Grignard Reagents;
Silverman, G. S.; Rekita, P. E., Eds.; Marcel Dekker:
New York, 1996; (c) Grignard Reagents New Develop-
ments; Richey, H. G., Jr., Ed.; J. Wiley and Sons:
Chichester, 2000.
2. For monographs, see: (a) Wakefield, B. J. Organolithium
Methods; Academic Press: London, 1988; (b) Lithium
Chemistry. A Theoretical and Experimental Overview;
Sapse, A.-M.; von Rague´ Schleyer, P., Eds.; J. Wiley and
Sons: Chichester, 1995; (c) Bartsab, R.; Drost, C.;
Klingebiel, U. In Synthetic Methods of Organometallic
and Inorganic Chemistry; Herrmann, W. A., Ed.; G.
Thieme Verlag: Stuttgart, 1996; Vol. 2, pp. 1–23; (c)
Clayden, J. Organolithiums: Selectivity for Synthesis;
Pergamon: Oxford, 2002.
10. At the same time, dilithio 1,2-benzenedithiolate is formed
which, after final protonation, was removed from the
reaction products by acid–base extraction.
11. See, for instance: Yus, M.; Foubelo, F.; Ferra´ndez, J. V.;
Bachki, A. Tetrahedron 2002, 58, 4907–4915.
12. See, for instance: Almena, J.; Foubelo, F.; Yus, M.
Tetrahedron 1995, 51, 3351–3364.