Organic Letters
Letter
(3) (a) Roberts, T. C.; Smith, P. A.; Cirz, R. T.; Romesberg, F. E.
Structural and Initial Biological Analysis of Synthetic Arylomycin A2.
J. Am. Chem. Soc. 2007, 129, 15830−15838. (b) Dufour, J.; Neuville,
L.; Zhu, J. Total Synthesis of Arylomycin A2, a Signal Peptidase I
(SPase I) Inhibitor. Synlett 2008, 2008, 2355−2359. (c) Dufour, J.;
Neuville, L.; Zhu, J. Intramolecular Suzuki-Miyaura Reaction for the
Total Synthesis of Signal Peptidase Inhibitors, Arylomycin A2 and B2.
Chem. - Eur. J. 2010, 16, 10523−10534. (d) Liu, J.; Luo, C.; Smith, P.
A.; Chin, J. K.; Page, M. G. P.; Paetzel, M.; Romesberg, F. E. Synthesis
and Characterization of the Arylomycin Lipoglycopeptide Antibiotics
and the Crystallographic Analysis of Their Complex with Signal
Peptidase. J. Am. Chem. Soc. 2011, 133, 17869−17877. (e) Peters, D.
S.; Romesberg, F. E.; Baran, P. S. Scalable Access to Arylomycins via
C-H Functionalization Logic. J. Am. Chem. Soc. 2018, 140, 2072−
2075.
(4) Gallant, M.; Villeneuve, K.; Beaulieu, P.; Robichaud, J.; Juteau,
H.; Gareau, Y.; Waddell, S. T.; Kevin, N.; Gu, X.; Huber, J.; Salvatore,
Jr., M. J.; Wilson, K.; Smith, S. K.; Zink, D. Bridged lipoglycopeptides
that potentiate the activity of beta-lactam antibacterials. U.S. Patent
Application 13/583,462, May 22, 2013.
(5) Smith, P. A.; Koehler, M. F. T.; Girgis, H. S.; Yan, D.; Chen, Y.;
Chen, Y.; Crawford, J. J.; Durk, M. R.; Higuchi, R. I.; Kang, J.;
Murray, J.; Paraselli, P.; Park, S.; Phung, W.; Quinn, J. G.; Roberts, T.
carboxylate 2,2-dioxide (28% assay yield), tert-butyl (2-iodoethyl)
carbamate (37% assay yield), tert-butyl (2-chloroethyl)carbamate
(58% assay yield), and 2-((tert-butoxycarbonyl)amino)ethyl 4-
methylbenzenesulfonate (74% assay yield).
(18) Atropisomers were only observed for disubstituted phenol 2.
(19) Carpino, L. A.; Imazumi, H.; El-Faham, A.; Ferrer, F. J.; Zhang,
C.; Lee, Y.; Foxman, B. M.; Henklein, P.; Hanay, C.; Mugge, C.;
̈
Wenschuh, H.; Klose, J.; Beyermann, M.; Bienert, M. The Uronium/
Guanidinium Peptide Coupling Reagents: Finally the True Uronium
Salts. Angew. Chem., Int. Ed. 2002, 41, 441−445.
(20) The Fmoc protecting group could be successfully removed by
secondary amines such as piperidine. However, the resulting tertiary
amine byproduct complicated the workup. Instead, TBAF was used:
Ueki, M.; Amemiya, M. Removal of 9-fluorenylmethyloxycarbonyl
(Fmoc) group with tetrabutylammonium fluoride. Tetrahedron Lett.
1987, 28, 6617−6620.
acid 4.
(22) We have demonstrated the Suzuki−Miyaura macrocyclization
on > 100 kg scale and the overall synthesis has produced > 5 kg of
API.
́
C.; Rouge, L.; Schwarz, J. B.; Skippington, E.; Wai, J.; Xu, M.; Yu, Z.;
Zhang, H.; Tan, M.-W.; Heise, C. E. Optimized arylomycins are a new
class of Gram-negative antibiotics. Nature 2018, 561, 189−194.
(6) Lim, N.-K.; Linghu, X.; Wong, N.; Zhang, H.; Sowell, C. G.;
Gosselin, F. Macrolactamization approaches to arylomycin antibiotics
core. Org. Lett. 2019, 21, 147−151.
(7) Diastereomeric ratio (dr) is defined as a ratio of the percentage
of the desired stereoisomer vs the sum of percentages of all other
stereoisomers present in the mixture.
(8) Epifano, F.; Sosa, S.; Tubaro, A.; Marcotullio, M. C.; Curini, M.;
Genovese, S. Topical anti-inflammatory activity of boropinic acid and
its natural and semi-synthetic derivatives. Bioorg. Med. Chem. Lett.
2011, 21, 769−772.
(9) Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-catalyzed
cross-coupling reaction of alkoxydiboron with haloarenes: a direct
procedure for arylboronic esters. J. Org. Chem. 1995, 60, 7508−7510.
(10) Roy, C. D.; Brown, H. C. Stability of boronic esters −
Structural effects on the relative rates of transesterification of 2-
(phenyl)-1,3,2-dioxaborolane. J. Organomet. Chem. 2007, 692, 784−
790.
(11) The corresponding BF3K salt resulted in inconsistent
performance in the Suzuki−Miyaura macrocyclization.
(12) Although upon isolation a 70:30 ratio of boronate ester and
boronic acid was obtained, the mixture was inconsequential to
downstream chemistry, as the boronate ester was fully converted to
the boronic acid in the next chemical step.
(13) Synthesis of fragment 9 was previously described in our earlier
work (ref 6).
(14) Johansson Seechurn, C. C. C.; Parisel, S. L.; Colacot, T. J. Air-
stable Pd(R-allyl)LCl (L= Q-Phos, P(t-Bu)3, etc.) systems for C−C/
N couplings: insight into the structure−activity relationship and
catalyst activation pathway. J. Org. Chem. 2011, 76, 7918−7932.
linear and cyclic oligomers and their mass spectrometric analysis.
(16) (a) Lennox, A. J. J.; Lloyd-Jones, G. C. The Slow-Release
Strategy in Suzuki−Miyaura Coupling. Isr. J. Chem. 2010, 50, 664−
674. (b) Amatore, C.; Le Duc, G.; Jutand, A. Mechanism of
Palladium-Catalyzed Suzuki−Miyaura Reactions: Multiple and
Antagonistic Roles of Anionic “Bases” and Their Countercations.
Chem. - Eur. J. 2013, 19, 10082−10093. (c) Lennox, A. J. J.; Lloyd-
Jones, G. C. Selection of boron reagents for Suzuki−Miyaura
coupling. Chem. Soc. Rev. 2014, 43, 412−443. (d) Lozada, J.; Liu,
Z.; Perrin, D. M. Base-Promoted Protodeboronation of 2,6-
Disubstituted Arylboronic Acids. J. Org. Chem. 2014, 79, 5365−5368.
(17) Other alkylating agents were also explored: tert-butyl aziridine-
1-carboxylate (12% assay yield), tert-butyl 1,2,3-oxathiazolidine-3-
E
Org. Lett. XXXX, XXX, XXX−XXX