the isotope-coded, fluorous photoaffinity groups can also be
incorporated into drug candidates, oligonucleotides, or proteins
to identify novel small molecule–protein, protein–nucleotide, or
protein–protein interactions.
Notes and references
1 (a) F. Cong, A. K. Cheung and S. M. Huang, Annu. Rev.
Pharmacol. Toxicol., 2011, 52, 57; (b) B. Lomenick, R. W. Olsen
and J. Huang, ACS Chem. Biol., 2011, 6, 34.
2 (a) M. Raida, Curr. Opin. Chem. Biol., 2011, 15, 570;
(b) K. Wierzba, M. Muroi and H. Osada, Curr. Opin. Chem. Biol.,
2011, 15, 57.
3 (a) R. Palchaudhuri and P. J. Hergenrother, ACS Chem. Biol.,
2011, 6, 21; (b) N. Perrimon, A. Friedman, B. Mathey-Prevot and
U. S. Eggert, Drug Discovery Today, 2007, 12, 28.
4 (a) C. A. Altar, M. P. Vawter and S. D. Ginsberg, Neuro-
psychopharmacology, 2009, 34, 18; (b) G. Roti and K. Stegmaier,
Br. J. Cancer, 2011, 106, 254.
5 F. Xie, T. Liu, W. J. Qian, V. A. Petyuk and R. D. Smith, J. Biol.
Chem., 2011, 286, 25443.
6 S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb and
R. Aebersold, Nat. Biotechnol., 1999, 17, 994.
7 P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson,
K. Parker, S. Hattan, N. Khainovski, S. Pillai, S. Dey,
S. Daniels, S. Purkayastha, P. Juhasz, S. Martin, M. Bartlet-Jones,
F. He, A. Jacobson and D. J. Pappin, Mol. Cell. Proteomics, 2004,
3, 1154.
8 A. Thompson, J. Schafer, K. Kuhn, S. Kienle, J. Schwarz,
G. Schmidt, T. Neumann, R. Johnstone, A. K. Mohammed and
C. Hamon, Anal. Chem., 2003, 75, 1895.
9 S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen,
A. Pandey and M. Mann, Mol. Cell. Proteomics, 2002, 1, 376.
10 (a) R. Cao, K. Chen, Q. Song, Y. Zang, J. Li, X. Wang, P. Chen
and S. Liang, J. Proteome Res., 2012, 11, 829; (b) L. Montani,
D. Bausch-Fluck, A. F. Domingues, B. Wollscheid and
J. B. Relvas, Methods Mol. Biol., 2012, 827, 305; (c) M. Hilger
and M. Mann, J. Proteome Res., 2012, 11, 982.
Fig. 3 Separation of fluorous tagged peptides from a complex mixture.
The mass spectrum of a mixture that contains 8-H4/8-D4 (1 mL, derived
from 10 mM 6) and BSA digest (5 mL, 7.5 mM): (A) before FSPE, 8-H4/
8-D4 = 1 : 1; (B) after FSPE, 8-H4/8-D4 = 1 : 1; (C) before FSPE, 8-H4/
8-D4 = 2 : 1; (D) after FSPE, 8-H4/8-D4 = 2 : 1.
11 S. E. Ong, X. Li, M. Schenone, S. L. Schreiber and S. A. Carr,
Methods Mol. Biol., 2012, 803, 129.
12 Z. Song and Q. Zhang, Org. Lett., 2009, 11, 4882.
13 (a) S. M. Brittain, S. B. Ficarro, A. Brock and E. C. Peters, Nat.
Biotechnol., 2005, 23, 463; (b) J. K. Kim, J. R. Lee, J. W. Kang,
S. J. Lee, G. C. Shin, W. S. Yeo, K. H. Kim, H. S. Park and
K. P. Kim, Anal. Chem., 2011, 83, 157.
14 K. Splith, I. Neundorf, W. Hu, H. W. Peindy N’Dongo,
V. Vasylyeva, K. Merz and U. Schatzschneider, Dalton Trans.,
2010, 39, 2536.
15 M. A. B. Sun-Hee Hwang and Hwa-Ok Kim, Open Org. Chem. J.,
2008, 2, 107.
16 C. Liu, J. M. Ding, L. E. Faiman and M. U. Gillette, J. Neurosci.,
1997, 17, 659.
proteins while the fluorous tag will enable the enrichment of
the labeled peptides. The isotope-coded information on the
new reagents could be used to quantify the interacting proteins
(like SILAC) but without the necessity to label the proteome
through metabolic interference (unlike SILAC). These features
will enable the reagents developed in this work suitable to capture
low abundance, low affinity, and context-specific interactions
in the cells. Although peptide is used for a demonstration,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3339–3341 3341