Table 1 Electroluminescence performances of TPE-Oxaa
ETL
lEL (nm)
Von (V)
Lmax (cd mꢂ2
)
CEmax (cd Aꢂ1
)
PEmax (lm Wꢂ1
)
EQEmax (%)
3
7
466
476
4.4
3.2
2800
7000
1.5
2.4
1.1
2.2
0.7
1.0
a
Device configurations, with ETL: ITO/NPB(60 nm)/TPE-Oxa(20 nm)/TPBi(10 nm)/Alq3(30 nm)/LiF/Al(200 nm); without ETL: ITO/NPB(60 nm)/
TPE-Oxa(60 nm)/LiF/Al(200 nm). Abbreviations: lEL ¼ EL maximum, Von ¼ turn-on voltage at 1 cd mꢂ2, Lmax ¼ maximum luminance, CEmax
¼
maximum current efficiency, PEmax ¼ maximum power efficiency, EQEmax ¼ maximum external quantum efficiency.
4 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu,
H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem.
Commun., 2001, 1740; (b) Y. Hong, J. W. Y. Lam and B. Z. Tang,
Chem. Commun., 2009, 4332; (c) J. Liu, J. W. Y. Lam and
B. Z. Tang, J. Inorg. Organomet. Polym. Mater., 2009, 19, 249; (d)
B. Z. Tang, Macromol. Chem. Phys., 2009, 210, 900; (e) Y. Liu,
Y. Tang, N. N. Barashkov, I. S. Irgibaeva, J. W. Y. Lam, R. Hu,
D. Birimzhanova, Y. Yu and B. Z. Tang, J. Am. Chem. Soc., 2010,
132, 13951; (f) Y. Liu, Y. Yu, J. W. Y. Lam, Y. Hong, M. Faisal,
W. Yuan and B. Z. Tang, Chem.–Eur. J., 2010, 16, 8433.
5 (a) H. Y. Chen, W. Y. Lam, J. D. Luo, Y. L. Ho, B. Z. Tang,
D. B. Zhu, M. Wong and H. S. Kwok, Appl. Phys. Lett., 2002, 81,
574; (b) Y. Dong, J. W. Y. Lam, A. Qin, J. Liu, Z. Li, B. Z. Tang,
J. Sun and H. S. Kwok, Appl. Phys. Lett., 2007, 91, 011111; (c)
Z. Zhao, S. Chen, J. W. Y. Lam, P. Lu, Y. Zhong, K. S. Wong,
H. S. Kwok and B. Z. Tang, Chem. Commun., 2010, 46, 2221.
6 S. Tao, L. Li, J. Yu, Y. Jiang, Y. Zhou, C. S. Lee, S. T. Lee, X. Zhang
and O. Kwon, Chem. Mater., 2009, 21, 1284.
TPE-Oxa as both light-emitting and electron-transporting
materials show superior performances to the devices of typical
configuration with a dedicated electron-transporting layer.
Benefiting from the good electron-transporting and hole-block-
ing properties of the dye, the device with simple structure shows
much lower turn-on voltage, higher brightness and efficiency.
The carrier mobility of the material in other kinds of devices, e.g.,
organic field-effect transistors (OFETs) or measured by the time
of flight (TOF) method will be studied in future works, to see
whether the material has potential in organic light-emitting
transistors (OLETs). Using this combination strategy developed
in this work, it is anticipated that more AIE luminogens with
versatile functionalities will be generated.
7 (a) W. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu,
H. S. Kwok, Y. Ma and B. Z. Tang, Adv. Mater., 2010, 22, 2159;
(b) Y. Liu, S. Chen, J. W. Y. Lam, P. Lu, R. T. K. Kwok,
F. Mahtab, H. S. Kwok and B. Z. Tang, Chem. Mater., 2011, 23,
2536.
8 (a) H. Antoniadis, M. A. Abkowitz and B. R. Hsieh, Appl. Phys. Lett.,
1994, 65, 2030; (b) A. P. Kulkarni, C. J. Tonzola, A. Babel and
S. A. Jenekhe, Chem. Mater., 2004, 16, 4556.
9 (a) S. Dailey, W. J. Feast, R. J. Peace, I. C. Sage, S. Till and
E. L. Wood, J. Mater. Chem., 2001, 11, 2238.
10 N. C. Yang, Y. H. Park and D. H. Suh, J. Polym. Sci., Part A: Polym.
Chem., 2003, 41, 674.
Acknowledgements
This work was partially supported by the Research Project
Competition of HKUST (RPC11SC09 and RPC10SC13), the
Research Grants Council of Hong Kong (604711, 603509, and
HKUST2/CRF/10), the National Natural Science Foundation of
China (20634020 and 20974028), and the University Grants
Committee of Hong Kong (AoE/P-03/08). B.Z.T. acknowledges
support from the Cao Guangbiao Foundation of Zhejiang
University.
11 (a) K. Kim, D. W. Lee and J.-I. Jin, Synth. Met., 2000, 114, 49; (b)
J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson,
E. L. Ritchie, H. K. Hall, T. Hopkins, E. A. Mash, J. Wang,
A. Padias, S. Thayumanavan, S. Barlow, S. R. Marder,
G. E. Jabbour, S. Shaheen, B. Kippelen, N. Peyghambarian,
R. M. Wightman and N. R. Armstrong, J. Am. Chem. Soc., 1998,
120, 9646.
12 (a) J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama and K. Nagai, Jpn.
J. Appl. Phys., 1993, 32, L917; (b) J. Shi, C. W. Tang, C. H. Chen,
U.S. Patent 5646948, 1997; (c) H. T. Shih, C. H. Lin, H. H. Shih
and C. H. Cheng, Adv. Mater., 2002, 14, 1409; (d) T. Yamamoto,
T. Maruyama, Z. H. Zhou, T. Ito, T. Fukuda, Y. Yoneda,
F. Begum, T. Ikeda, S. Sasaki, H. Takezoe, A. Fukuda and
K. Kubota, J. Am.Chem. Soc., 1994, 116, 4832; (e) A. K. Agrawal
and S. A. Jenekhe, Macromolecules, 1993, 26, 895; (f) C. J. Tonzola,
M. M. Alam, W. Kaminsky and S. A. Jenekhe, J. Am. Chem. Soc.,
2003, 125, 13548.
13 (a) J. Bettenhausen, M. Greczmiel, M. Jandke and P. Strohriegl,
Synth. Met., 1997, 91, 223; (b) G. Hughes and M. R. Bryce, J.
Mater. Chem., 2005, 15, 94; (c) G. Hughes and M. R. Bryce, J.
Mater. Chem., 2005, 15, 94.
14 (a) B. Schulz, M. Bruma and L. Brehmer, Adv. Mater., 1997, 9, 601;
(b) C. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce and
M. C. Petty, J. Mater. Chem., 2002, 12, 173.
Notes and references
1 (a) C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913;
(b) K. Mullen, U. Scherf, Organic Light-Emitting Devices. Synthesis,
Properties and Applications, Wiley, Weinheim, Germany, 2006; (c)
J. Roncali, P. Leriche and A. Cravino, Adv. Mater., 2007, 19, 2045;
(d) B. Liu, T. T. T. Dan and G. C. Bazan, Adv. Funct. Mater., 2007,
17, 2432.
2 (a) A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz and
A. B. Holmes, Chem. Rev., 2009, 109, 897; (b) J. Liu, J. W. Y. Lam
and B. Z. Tang, Chem. Rev., 2009, 109, 5799; (c) M. Shimizu,
H. Tatsumi, K. Mochida, K. Shimono and T. Hiyama, Chem.–
Asian J., 2009, 4, 1289; (d) K. Y. Pu and B. Liu, Adv. Funct.
Mater., 2009, 19, 277; (e) A. Iida and S. Yamaguchi, Chem.
Commun., 2009, 3002; (f) T. P. I. Saragi, T. Spehr, A. Siebert,
T. Fuhrmann-Lieker and J. Salbeck, Chem. Rev., 2007, 107, 1011;
(g) Z. Ning, Z. Chen, Q. Zhang, Y. Yan, S. Qian, Y. Cao and
H. Tian, Adv. Funct. Mater., 2007, 17, 3799; (h) S. Yin, Q. Peng,
Z. Shuai, W. Fang, Y. Wang and Y. Luo, Phys. Rev. B: Condens.
Matter Mater. Phys., 2006, 73, 205409; (i) Y. Kawamura,
K. Goushi, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi, Appl.
Phys. Lett., 2005, 86, 071104; (j) A. B. Koren, M. D. Curtis,
A. H. Francis and J. W. Kampf, J. Am. Chem. Soc., 2003, 125, 5040.
3 (a) S. H. Lee, B. B. Jang and Z. H. Kafafi, J. Am. Chem. Soc., 2005,
127, 9071; (b) D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang,
C. J. Hawker and K. R. Carter, J. Am. Chem. Soc., 2001, 123,
6965; (c) S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann,
K. Muellen, F. Meghdadi, E. J. W. List, G. Leising and J. Am, J.
Am. Chem. Soc., 2001, 123, 946.
15 (a) S. Oyston, C. Wang, G. Hughes, A. S. Batsanov, I. F. Perepichka,
M. R. Bryce, J. H. Ahn, C. Pearson and M. C. Petty, J. Mater. Chem.,
2005, 15, 194; (b) C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett.,
1990, 56, 799; (c) Y. Cao, I. D. Parker, G. Yu, C. Zhang and
A. J. Heeger, Nature, 1999, 397, 414; (d) S. W. Cha, S.-H. Choi,
K. Kim and J.-I. Jin, J. Mater. Chem., 2003, 13, 1900; (e)
N. Tamoto, C. Adachi and K. Nagai, Chem. Mater., 1997, 9, 1077;
5188 | J. Mater. Chem., 2012, 22, 5184–5189
This journal is ª The Royal Society of Chemistry 2012