catalyzed SN1 reactions were also reported, only benzylic
acetates, which easily generate the corresponding carbo-
cations, were used.3d,6j,6k There are only SN2 reactions using
specifically activated acetates such as β-nitro acetates,6b,c
β-acetoxy R-diazo carbonyl compounds,6h and R-amide R-
acetoxy esters.6g In these reaction systems, the scope of
applicable alkyl acetates was strictly limited by the reaction
mechanism. In addition, the substitution of simple alkyl
acetates, which requires harsh conditions, has not been
much developed because of the risk of undesired transfor-
mation of esters into thioesters. Herein, we present a
general route to thioethers in which a direct coupling
between alkyl acetates and thiosilanes was effectively
catalyzed by InI3. Various types of acetates such as pri-
mary, secondary, tertiary, allylic, benzylic, and propargylic
acetates were readily applicable. As far as we could ascer-
tain, the present reaction system has the widest scope of
alkyl acetates among reported procedures (Figure 1).
First, the screening of catalysts was carried out in the
model reaction of 2-acetoxyoctane 1a with trimethyl-
(phenylthio)silane 2a (Table 1). InI3 was found to promote
most effectively the direct substitution of the acetoxy
group by 2a at 90 °C in toluene, furnishing the desired
thioether 3aa in 77% yield (entry 1). InBr3 also showed a
moderate catalytic effect (entry 2).8 The use of InCl3 and
In(OTf)3 resulted in no reaction (entries 3 and 4). The
representative oxophilicLewisacids suchasBF3 OEt2 and
AlCl3 afforded no desired thioether (entries 5 and 7).
Interestingly, a stoichiometric amount of BF3 OEt2 or
3
3
AlCl3 promoted a type of transesterification to produce
silyl ether 4 and thioester 5 (entries 6 and 8). These results
strongly indicated a sharp contrast in activation mode of
acetoxy moiety between indium triiodide and the repre-
sentative Lewis acids. Moreover, the employment of ZnI2,
which was reported to be effective in the synthesis of
thioethers by the reaction between thiols and alcohols,3a
resulted in only 8% yield (entry 9). B(C6F5)3 and Bi(OTf)3
were ineffective, although they accelerated coupling reac-
tions of alkyl acetates with allylic silanes and silyl enolates,
respectively (entries 10 and 11).9,10 Sc(OTf)3 also gave no
product (entry 12). ClCH2CH2Cl and hexane were also
found to be suitable solvents (entries 13 and 14). In contrast,
coordinative solvents like acetonitrile and DMF did not
furnish the desired reaction (entries 15 and 16).
Table 1. Screening of Catalysts and Solventsa
yieldb (%)
(4) Transition-metal-catalyzed reactions: (a) Inomata, K.; Yamamoto,
T.; Kotake, H. Chem. Lett. 1981, 1357. (b) Trost, B. M.; Scanlan, T. S.
Tetrahedron Lett. 1986, 27, 4141. (c) Goux, C.; Lhoste, P.; Sinou, D.
Tetrahedron Lett. 1992, 33, 8099. (d) Kondo, T.; Morisaki, Y.; Uenoyama,
S.; Wada, K.; Mitsudo, T. J. Am. Chem. Soc. 1999, 121, 8657. (e)
Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
2004, 69, 3474. (f) Yatsumonji, Y.; Ishida, Y.; Tsubouchi, A.; Takeda,
T. Org. Lett. 2007, 9, 4603. (g) Tanaka, S.; Pradhan, P. K.; Maegawa,
Y.; Kitamura, M. Chem. Commun. 2010, 46, 3996.
entry
catalyst
InI3
3aa
4c
5
1
77
49
0
0
0
0
2
InBr3
0
0
3
InCl3
0
4
In(OTf)3
0
0
0
(5) Ruthenium-catalyzed propargylic substitution reaction:Inada,
Y.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002,
124, 15172.
5
BF3 OEt2
0
0
5
3
6d
7
BF3 OEt2
0
34
0
35
0
3
AlCl3
AlCl3
ZnI2
0
(6) SN2-type reaction using a strong base: (a) Carroll, F. I.; White,
J. D.; Wall, M. J. Org. Chem. 1963, 28, 1236. (b) Lehr, H.; Karlan, S.;
Goldberg, M. W. J. Med. Chem. 1963, 6, 136. (c) Carroll, F. I.; White,
J. D.; Wall, M. E. J. Org. Chem. 1963, 28, 1240. (d) Ono, N.; Kamimura,
A.; Kaji, A. Tetrahedron Lett. 1986, 27, 1595. (e) Selva, M.; Trotta, F.;
Tundo, P. J. Chem. Soc., Perkin Trans. 2 1992, 519. (f) Otera, J.;
Nakazawa, K.; Sekoguchi, K.; Orita, A. Tetrahedron 1997, 53, 13633.
(g) Paulitz, C.; Steglich, W. J. Org. Chem. 1997, 62, 8474. (h) Xu, F.; Shi,
W.; Wang, J. J. Org. Chem. 2005, 70, 4191. (i) Kuroda, K.; Maruyama,
Y.; Hayashi, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2009, 82, 381. (j)
Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 6480. (k)
Saha, A.; Ranu, B. C. Tetrahedron Lett. 2010, 51, 1902.
8d
9
0
30
0
20
0
8
10
11
12
13e
14f
15g
16h
B(C6F5)3
Bi(OTf)3
Sc(OTf)3
InI3
0
0
0
0
0
0
0
0
0
66
64
0
0
0
InI3
0
0
InI3
0
0
InI3
0
0
0
(7) (a) Nakagawa, I.; Hata, T. Tetrahedron Lett. 1975, 17, 1409. (b)
Mukaiyama, T.; Ikegai, K. Chem. Lett. 2004, 1522.
a 1a (1 mmol), 2a (2 mmol), catalyst (0.1 mmol), toluene (1 mL),
90 °C, 3 h. b Yields were determined by analysis of 1H NMR spectra of
product mixtures prior to purification. c The yield of 4 was determined
after the hydrolysis of 4 to 2-octanol with 1 M HCl aq. d Catalyst
(1 mmol). e 1,2-DCE solvent. f Hexane solvent. g CH3CN solvent. h DMF
solvent.
(8) (a) Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Angew. Chem., Int.
Ed. 2004, 43, 1414. (b) Saito, T.; Yasuda, M.; Baba, A. Synlett 2005,
1737. (c) Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem.
2006, 71, 8516. (d) Huang, J.-M.; Wong, C.-M.; Xub, F.-X.; Loh, T.-P.
Tetrahedron Lett. 2007, 48, 3375. (e) Baba, A.; Yasuda, M.; Nishimoto,
Y.; Saito, T.; Onishi, Y. Pure Appl. Chem. 2008, 80, 845. (f) Nishimoto,
Y.; Kajioka, M.; Saito, T.; Yasuda, M.; Baba, A. Chem. Commun. 2008,
6396. (g) Nishimoto, Y.; Onishi, Y.; Yasuda, M.; Baba, A. Angew.
Chem., Int. Ed. 2009, 48, 9131. (h) Nishimoto, Y.; Saito, T.; Yasuda, M.;
Baba, A. Tetrahedron 2009, 65, 5462. (i) Nishimoto, Y.; Moritoh, R.;
Yasuda, M.; Baba, A. Angew. Chem., Int. Ed. 2009, 48, 4577. (j)
Nishimoto, Y.; Inamoto, Y.; Saito, T.; Yasuda, M.; Baba, A. Eur. J.
Org. Chem. 2010, 3382. (k) Nishimoto, Y.; Ueda, H.; Inamoto, Y.;
Yasuda, M.; Baba, A. Org. Lett. 2010, 12, 3390. (l) Onishi, Y.;
Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2011, 13, 2762. (m)
Nishimoto, Y.; Okita, A.; Yasuda, M.; Baba, A. Angew. Chem., Int. Ed.
2011, 50, 8623. (n) Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A.
Chem. Lett. 2011, 40, 1223.
We next surveyed the scope of applicable thioethers. As
Table 2 shows, a variety of alkyl acetates were employed
smoothly. Primary and tertiary alkyl acetates (1b and 1d)
(9) (a) Rubin, M.; Gevorgyan, V. Org. Lett. 2001, 3, 2705. (b)
Schwier, T.; Rubin, M.; Gevorgyan, V. Org. Lett. 2004, 6, 1999.
(10) (a) Rubenbauer, P.; Bach, T. Tetrahedron Lett. 2008, 49, 1305.
(b) Rubenbauer, P.; Herdtweck, E.; Strassner, T.; Bach, T. Angew.
Chem., Int. Ed. 2008, 47, 10106.
Org. Lett., Vol. 14, No. 7, 2012
1847