ORGANIC
LETTERS
2012
Vol. 14, No. 7
1676–1679
Competitive [2,3]- and [1,2]-Oxonium Ylide
Rearrangements. Concerted or Stepwise?
Deana M. Jaber,‡ Ryan N. Burgin,† Matthew Helper,† Peter Y. Zavalij,† and Michael P. Doyle*,†
Department of Chemistry and Biochemistry, University of Maryland, College Park,
Maryland 20742, United States, and Department of Biology and Physical Sciences,
Marymount University, Arlington, Virginia 22207, United States
Received January 26, 2012
ABSTRACT
The axialꢀequatorial conformational isomer distribution of the reactant diazoacetoacetate or its metal carbene intermediate is reflected in Rh(II)
catalyzed oxonium ylide forming reactions of 3-(trans-2-arylvinyl)tetrahydropyranone-5-diazoacetoacetates that afford diastereoisomeric
products for both the symmetry-allowed [2,3]- and the formally symmetry-forbidden [1,2]-oxonium ylide rearrangements.
We have reported that dirhodium(II) catalyzed reac-
tions of racemic trans-aryl-substituted tetrahydropyra-
none diazoacetoacetates 1 produce two diastereoisomeric
products (syn-4 and anti-4) that are proposed to arise from
two noninterconvertable oxonium ylide intermediates (3A
and 3B) via what appeared to be a concerted [1,2]-rearrange-
ment (Scheme1).1 Product ratios were independent of ligand
size or electron-withdrawing influence, and although
para-substituents on the aromatic ring affected the yields of
the ylide rearrangement products, they had limited effect on
their ratios (stereoselectivity). However, increasing the steric
bulk of the aryl group (ortho substituents) led exclusively to
the formation of one diastereoisomer and suggested that
conformational isomers in the reactant and the intermediate
metal carbene are responsible for the formation of diaste-
reoisomeric products.
The mechanism of the [1,2]-rearrangement of oxonium
ylides has been interpreted as occurring via either a cleav-
age/recombination (either homolytic or heterolytic) or a
concerted pathway.2 Because this reaction is formally
considered to be symmetry forbidden,3 the rearrangement
is regarded to occur by cleavage/recombination,4 although
other mechanistic possibilities exist.5ꢀ7 However, con-
vincing evidence regarding the cleavage/recombination
(4) (a) Stewart, C.; McDonald, R.; West, F. G. Org. Lett. 2011, 13,
720. (b) Murphy, G. K.; Marmsaeter, F. P.; West, F. G. Can. J. Chem.
2006, 84, 1470. (c) Murphy, G. K.; West, F. G. Org. Lett. 2005, 7, 1801.
(d) Marmsaeter, F. P.; West, F. G. J. Am. Chem. Soc. 2001, 123, 5144. (e)
Feldman, K. S.; Wrobleski, M. L. J. Org. Chem. 2000, 65, 8659. (f)
Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Tedrow, J. S. Tetrahedron
Lett. 1997, 38, 4367. (g) Doyle, M. P.; Griffin, J. H.; Chinn, M. S.;
Van Leusen, D. J. Org. Chem. 1984, 49, 1917.
(5) A concerted mechanism, including those with metal association:
(a) Lu, C.-D.; Liu, H.; Chen, Z.-Y.; Hu, W.-H.; Mi, A.-Q. Org. Lett.
2005, 7, 83. (b) Qu, Z.; Shi, W.; Wang, J. J. Org. Chem. 2004, 69, 217. (c)
Kitagaki, S.; Yanamoto, Y.; Tsutsui, H.; Anada, M.; Nakajima, M.;
Hashimoto, S. Tetrahedron Lett. 2001, 42, 6361. (d) Roskamp, E. J.;
Johnson, C. R. J. Am. Chem. Soc. 1986, 108, 6062.
† University of Maryland.
‡ Marymount University.
(1) Jaber, D. M.; Burgin, R. N.; Hepler, M.; Zavalij, P.; Doyle, M. P.
Chem. Commun. 2011, 47, 7623.
(2) (a) Wang, J. In Comprehensive Organometallic Chemistry;
Crabtree, R. H., Mingos, D. M., Eds.; Elsevier: Oxford, 2007; Vol. 11,
pp 151ꢀ178. (b) West, F. G. In Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley-VCH: New York, 2005; Chapter 18.
(c) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001,
30, 50. (d) Doyle, M. P.; Mckervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; Wiley: New York,
1998. (e) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
(3) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl.
1969, 8, 781.
(6) Through an oxonium metal enolate: (a) Ji, J.; Zhang, X.; Zhu, Y.;
Qian, Y.; Zhou, J.; Yang, L.; Hu, W. J. Org. Chem. 2011, 76, 5821. (b)
Sawada, Y.; Mori, T.; Oku, A. J. Org. Chem. 2003, 68, 10040.
r
10.1021/ol300213u
Published on Web 03/12/2012
2012 American Chemical Society