underwent the tandem aza-Claisen rearrangementꢀ
carbocyclization to give 9b, presumably through a tertiary
carbocation intermediate.
Scheme 1. A Carbocyclization of Allyl Ketenimines
While it is also possible that deprotonation could lead to
1-amido dienes that then tautomerized to the observed
cyclopentenimines, the idea of a 1,2-H shift was enticing.
We therefore wondered if other MeerweinꢀWagner shifts
could occur following the initial aza-Claisen rearrange-
ment and carbocyclization (Scheme 3). To explore this
possibility, N-prenyl ynamide 10 was heated to 135 °C,
with the hopes of demonstrating a 1,2-methyl shift through
the formation of cyclopentenimine 14. Unfortunately, 14
was not observed. Instead, a 1:1 tautomeric mixture of 13a
and 13b was isolated in 90% yield causedby deprotonation
R to the enamide instead of the desired methyl shift.
Remarkably, when air was bubbled through the tauto-
meric mixture at rt in CHCl3, a [4 þ 2] cycloaddition of
2-amido diene 13b with O2 ensued to first give endoperoxide
1,2-H shift, or more powerfully, nucleophilic trapping11ꢀ13
of 6. We report herein our success in intercepting these
intermediates.
Scheme 3. Attempts at a 1,2-Alkyl Shift: An Unexpected [4 þ 2]
Scheme 2. Feasibility of the Carbocyclization
Our first success with an ynamide-initiated thermal
carbocyclization was the rearrangement of ynamide 8a
to R,β-unsaturated cyclopentenimine 9a in 50% yield
(Scheme 2). We were fascinated with this discovery, as it
implied that a 1,2-H shift through zwitter ionic intermedi-
ate 6 may be in operation. Furthermore, ynamide 8b also
(6) (a) DeKorver, K. A.; North, T. D.; Hsung, R. P. Synlett 2010,
2397. (b) Zhang, Y.; DeKorver, K. A.; Lohse, A. G.; Zhang, Y.-S.;
Huang, J.; Hsung, R. P. Org. Lett. 2009, 11, 899.
(7) For reviews on the chemistry of ketenimines, see: (a) Krow, G. R.
Angew. Chem., Int. Ed. Engl. 1971, 10, 435. (b) Gambaryan, N. P. Usp.
Khim. 1976, 45, 1251. (c) Dondoni, A. Heterocycles 1980, 14, 1547. (d)
Barker, M. W.; McHenry, W. E. In The Chemistry of Ketenes, Allenes
and Related Compounds; Patai, S., Ed.; Wiley-Interscience: Chichester,
U.K., 1980; Part 2, pp701ꢀ720. (e) Alajarin, M.; Vidal, A.; Tovar, F.
Targets Heterocycl. Syst. 2000, 4, 293.
(8) DeKorver, K. A.; Johnson, W. L.; Zhang, Y.; Hsung, R. P.; Dai,
H.; Deng, J.; Lohse, A. G.; Zhang, Y.-S. J. Org. Chem. 2011, 76, 5092.
(9) DeKorver, K. A.; Hsung, R. P.; Lohse, A. G.; Zhang, Y. Org.
Lett. 2010, 12, 1840.
(10) For leading references on synthetic applications of nitriles, see:
(a) Fleming, F. F.; Liu, W. Eur. J. Org. Chem. 2009, 699. (b) Fleming,
F. F.; Wei, G.; Steward, O. W. J. Org. Chem. 2008, 73, 3674. (c)
Mermerian, A. H.; Fu, G. C. Angew. Chem., Int. Ed. 2005, 44, 949.
(11) For related carbocyclizations of ynol ethers, see: (a) Sosa, J. R.;
Tudjarian, A. A.; Minehan, T. G. Org. Lett. 2008, 10, 5091. (b)
Tudjarian, A. A.; Minehan, T. G. J. Org. Chem. 2011, 76, 3576.
(12) Hanessian, S.; Tremblay, M.; Marzi, M.; Del Valle, J. R. J. Org.
Chem. 2005, 70, 5070.
16 that subsequently fragmented to the isolated ene-dione
15. While this could be a radical fragmentation, although
the reaction conditions involved no base, it is very likely
another example of a KornblumꢀDeLaMare process.14,15
The idea of pursuing [4 þ 2] cycloadditions with in situ
generated 2-amido dienes was intriguing; however we were
still very interested in intercepting the zwitter ionic inter-
mediates through either MeerweinꢀWagner rearrange-
ments or nucleophilic trappings. To explore the former,
we prepared ynamides 17 and 21 bearing a tethered
(13) For related examples of intercepted Nazarov cyclizations, see:
(a) Giese, S.; Kastrup, L.; Stiens, D.; West, F. G. Angew. Chem., Int. Ed.
2000, 39, 1970. (b) Giese, S.; West, F. G. Tetrahedron 2000, 56, 10221. (c)
Wang, Y.; Schill, B. D.; Arif, A. M.; West, F. G. Org. Lett. 2003, 5, 2747.
(d) Huang, J.; Leboeuf, D.; Frontier, A. J. J. Am. Chem. Soc. 2011, 133,
6307. (e) For a recent review, see: Grant, T. N.; Rieder, C. J.; West, F. G.
Chem. Commun. 2009, 5676.
(14) Kornblum, N.; DeLaMare, H. E. J. Am. Chem. Soc. 1951, 73,
880.
(15) For recent examples, see: (a) Tang, Y.; Cole, K. P.; Buchanan,
G. S.; Li, G.; Hsung, R. P. Org. Lett. 2009, 11, 1591. (b) Buchanan, G. S.;
Cole, K. P.; Tang, Y.; Hsung, R. P. J. Org. Chem. 2011, 76, 7027.
Org. Lett., Vol. 14, No. 7, 2012
1769