1854
Q. Xue et al. / Tetrahedron Letters 53 (2012) 1851–1854
Table 3
Conclusions
One-pot synthesis of (E)-vinyl sulfoxidesa
We have developed an efficient metal-free methodology for the
preparation of substituted (E)-vinyl sulfones and sulfoxides. It is
the first example for the synthesis of vinyl sulfones or sulfoxides
in one-pot through direct addition–oxidation of thiols with al-
kynes. This new protocol is well warranted in synthetic organic,
using simple materials and easy experimental procedure. The def-
inition of the mechanism and synthetic application of this reaction
are currently under study in our laboratory.
Entry
1
1
2
4
Yieldb
94
Acknowledgments
1a
2a
4a
4b
4c
4d
We gratefully acknowledge the National Natural Science Foun-
dation of China (20832001, 20972065, 21074054, 21172106) and
the National Basic Research Program of China (2010CB923303)
for their financial support.
2
3
4
1c
1a
1a
2a
2b
2c
83
84
97
Supplementary data
Supplementary data (experimental details and the characteriza-
tion data for the compounds 3a–m and 4a–j) associated with this
the most important compounds described in this article.
5
1a
2d
4e
93
References and notes
1. (a) Newton, A. S.; Glória, P. M. C.; Gonçalves, L. M.; Santos, D. J. V. A.; Moreira,
R.; Guedes, R. C.; Santos, M. M. M. Eur. J. Med. Chem. 2010, 45, 3858–3863; (b)
Ettari, R.; Nizi, E.; Di Francesco, M. E.; Dude, M.; Pradel, G.; Viík, R.;
Schirmeister, T.; Micale, N.; Grasso, S.; Zappalà, M. J. Med. Chem. 2008, 51,
988–996.
2. (a) Gordon, C. P.; Griffith, R.; Keller, P. A. Med. Chem. 2007, 3, 199–220; (b)
Meadows, D. C.; Mathews, T. B.; North, T. W.; Hadd, M. J.; Kuo, C. L.; Neamati,
N.; Gervay-Hague, J. J. Med. Chem. 2005, 48, 4526–4534.
6
7
1a
1a
2e
2f
4f
83
71
4g
3. Mori, K.; Ohmori, K.; Suzuki, K. Angew. Chem., Int. Ed. 2009, 48, 5633–5637.
4. (a) Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10, 3611–3614; (b)
Noshi, M. N.; El-awa, A.; Torres, E.; Fuchs, P. L. J. Am. Chem. Soc. 2007, 129,
11242–11247; (c) Desrosiers, J.; Charette, A. B. Angew. Chem., Int. Ed. 2007, 46,
5955–5957; (d) Csákÿ, A. G.; de la Herrán, G.; Murcia, M. C. Chem. Soc. Rev.
2010, 39, 4080–4102.
5. (a) Meadows, D. C.; Gervay-Hague, J. J. Med. Res. Rev. 2006, 26, 793–814; (b)
Nenajdenko, V. G.; Krasovskiy, A. L.; Balenkova, E. S. Tetrahedron 2007, 63,
12481–12539.
6. (a) Huang, X.; Duan, D.; Zheng, W. J. Org. Chem. 2003, 68, 1958–1963; (b)
Kirihara, M.; Yamamoto, J.; Noguchi, T.; Hirai, Y. Tetrahedron Lett. 2009, 50,
1180–1183.
7. (a) Xu, W. M.; Tang, E.; Huang, X. Synthesis 2004, 13, 2094–2098; (b) Back, T. G.;
Collins, S. J. Org. Chem. 1981, 46, 3249–3256; (c) Brebion, F.; Goddard, J.;
Fensterbank, L.; Malacria, M. Org. Lett. 2008, 10, 1917–1920.
8
9
1c
1b
1c
2b
2c
2c
4h
4i
87
97
98
10
4j
8. Happer, D. A. R.; Steenson, B. E. Synthesis 1980, 10, 806–808.
9. (a) van Steenis, J. H.; van Es, J. J. G. S.; van der Gen, A. Eur. J. Org. Chem. 2000,
2000, 2787–2793; (b) Mikolajczyk, M.; Perlikowska, W.; Omelanczuk, J.;
Cristau, H.; Perraud-Darcy, A. J. Org. Chem. 1998, 63, 9716–9722.
10. Popoff, I. C.; Dever, J. L.; Leader, G. R. J. Org. Chem. 1969, 34, 1128–1130.
11. Tsui, G. C.; Glenadel, Q.; Lau, C.; Lautens, M. Org. Lett. 2011, 13, 208–211.
12. (a) Song, R.; Liu, Y.; Liu, Y.; Li, J. J. Org. Chem. 2011, 76, 1001–1004; (b) Guo, H.;
Zheng, Z.; Yu, F.; Ma, S.; Holuigue, A.; Tromp, D. S.; Elsevier, C. J.; Yu, Y. Angew.
Chem., Int. Ed. 2006, 45, 4997–5000; (c) Battacea, A.; Zairb, T.; Doucet, H.;
Santelli, M. Synthesis 2006, 3, 3495–3505; (d) Kabalka, G. W.; Guchhait, S. K.
Tetrahedron Lett. 2004, 45, 4021–4022.
a
Reaction conditions: 1 (0.50 mmol), 2 (0.60 mmol), 0.2 mL H2O2 (30% in water),
0.25 mmol NH4Cl, 1.0 mL THF at room temperature for 48 h under air.
b
Isolated yield (%).
(E)-isomeric predominant vinyl sulfoxide. Geometrical isomers can
be separated by chromatography on silica gel easily. Encouraged
by this, we investigated the scope of this protocol for the synthesis
of (E)-vinyl sulfoxides. The results were listed in Table 3. It was
discovered that a wide range of aryl thiols were tolerated in this
protocol (Table 3, entries 1, 2, 9). Aromatic alkynes bearing substit-
uents such as methyl, methoxy, and fluoro also afforded good
yields (Table 3, entries 3–5). Furthermore, aliphatic alkynes with
different substituents also can react with 4-methylbenzenethiol
smoothly, furnishing the desired products in 71–83% yield (Table
3, entries 6 and 7). Subsequently, electronic effect of substituents
was investigated. The results demonstrated that electron-rich
alkynes give higher yields (Table 3, entries 4, 9, 10).
13. (a) Huang, F.; Batey, R. A. Tetrahedron 2007, 63, 7667–7672; (b) Bian, M.; Xu, F.;
Ma, C. Synthesis 2007, 19, 2951–2956; (c) Bao, W.; Wang, C. J. Chem. Res. 2006,
37, 396–397.
14. (a) Nair, V.; Augustine, A.; Suja, T. D. Synthesis 2002, 1, 2259–2265; (b) Nair, V.;
Augustine, A.; George, T. G.; Nair, L. G. Tetrahedron Lett. 2001, 42, 6763–6765.
15. (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 3, 1596–1636; (b) Xu, R.;
Wan, J.; Mao, H.; Pan, Y. J. Am. Chem. Soc. 2010, 44, 15531–15533; (c) Sperotto,
E.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G. J. Org. Chem. 2008, 14, 5625–
5628; (d) Kondoh, A.; Takami, K.; Yorimitsu, H.; Oshima, K. J. Org. Chem. 2005,
70, 6468–6473; (e) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc.
1999, 121, 5108–5144.
16. Taliansky, S. Synlett 2005, 1962–1963.