1888
I.-C. Grig-Alexa et al. / Tetrahedron Letters 53 (2012) 1885–1888
Table 3
Reduction of 1a and protection with 4-methoxybenzenesulfonyl chloride or benzyl chloroformate in pyridine
Entry
R0Cl
Ratio 9/10
Product 9 yield (%)
Product 10 yield (%)
Total yield (%)
1
2
MeO-C6H4-SO2Cl
C6H5-CH2OCOCl
24/76
20/80
18
14
55
64
73
78
7. (a) Okamoto, T.; Shudo, K.; Ohta, T. J. Am. Chem. Soc. 1975, 97, 7184–7185; (b)
Makosza, M.; Wojciechowski, K. Chem. Rev. 2004, 104, 2631–2666; (c) Ung, S.;
Falguieres, A.; Guy, A.; Ferroud, C. Tetrahedron Lett. 2005, 46, 5913–5917; (d)
Zhou, Y.; Li, J.; Liu, H.; Zhao, L.; Jiang, H. Tetrahedron Lett. 2006, 47, 8511–8514;
(e) Gamble, A. B.; Garner, J.; Gordon, C. P.; O’Conner, S. M. J.; Keller, P. A. Synth.
Commun. 2007, 37, 2777–2786.
8. (a) Compounds 1a–e and 1g–h were prepared using the method described in
Ref. 3. (b) Compounds 1f, 1i and 1j were prepared using the method described
by El-Bardan, A. A.; El-Subruiti; G. M.; El-Hegazy, F. E.-Z. M.; Hamed, E. A. Int. J.
Chem. Kinet. 2002, 34, 645–650.
9. General procedure for the preparation of compounds 6 and 7. A mixture of
dipyridinylamine or N-arylpyridin-2-ylamine 1a–j and SnCl2ꢀ2H2O (5 equiv) in
10 mL of EtOH was heated at 60 °C. After reduction, the solution was allowed to
cool. The pH was made slightly basic (pH 7–8) by the addition of 5% aqueous
KHCO3 before extraction with EtOAc. The organic phase was dried over MgSO4.
The solvent was removed to afford the amine, which was immediately
dissolved in CH2Cl2 (10 mL) and then Et3N (1.5 equiv) and trimethylacetyl
chloride (1.1 equiv) were added. The reaction mixture was stirred at room
temperature overnight, concentrated in vacuo and the resulting residue was
purified by flash chromatography (eluted with EtOAc/PE).
Taking into account the widespread use and the high efficiency
of bromo compounds for further cyclizations via palladium-
catalyzed intramolecular C–C and C–N bond formation,2,15 we
chose to continue our study using N-(3-bromopyridin-2-yl)-N-(5-
nitropyridin-2-yl)methyalamine (1a) as the substrate for further
investigations.
Thus, the reduction was achieved with SnCl2ꢀ2H2O in different
alcohols, in order to introduce various alkoxy groups at the 60-
position (Scheme 6, Table 2).
In all cases, compounds 8a–d were easily obtained, illustrating
the ability to introduce various alkoxy groups.
The addition of different Lewis acids, such as BF3ꢀEt2O or
Sc(OTf)3, to the reaction mixtures did not have any significant
influence on the yields of the ortho-alkoxysubstituted derivatives.
The reduction of 1a using ethyl acetate as the solvent led to the
exclusive generation of the corresponding amine and no trace of
substitution at the ortho position was observed. After protection,
we obtained compound 6a (Scheme 7).
We also used other amine protecting groups such as 4-
methoxybenzenesulfonyl chloride and benzyl chloroformate in
pyridine (Scheme 8). Hence, compounds 9a, 10a and 9b, 10b were
obtained in good yields (Table 3).
10. (a) Compound 6a: IR (ATR): 1506, 2960, 3440 cmꢁ1; MS: m/z = 349.0 ([M+H]+,
79Br), 351.0 ([M+H]+, 81Br); HRMS calculated for C15H18N4OBr [M+H]+
349.0668, found 349.0664; 1H NMR (CDCl3, 400 MHz) d = 1.33 (s, 9H, 3CH3),
6.70 (dd, 1H, J = 4.8, 7.7 Hz), 7.32 (br s, 1H, NH), 7.77 (dd, 1H, J = 1.5, 7.7 Hz),
7.81 (br s, 1H, NH), 7.99 (dd, 1H, J = 2.4, 9.0 Hz), 8.20 (dd, 1H, J = 1.4, 4.7 Hz),
8.34 (d, 1H, J = 2.4 Hz), 8.42 (d, 1H, J = 9.0 Hz); 13C NMR (CDCl3, 100.6 MHz)
d = 27.8 (3CH3), 39.7 (Cq), 106.9 (Cq), 112.4 (CH), 116.7 (CH), 129.6 (Cq), 130.7
(CH), 139.9 (CH), 140.6 (CH), 146.3 (CH), 149.6 (Cq), 150.8 (Cq), 176.9 (Cq). (b)
Compound 7a: IR (ATR): 1426, 2962, 3441 cmꢁ1; MS: m/z = 393.0 ([M+H]+,
79Br), 395.0 ([M+H]+, 81Br), 415.0 ([M+Na]+, 79Br), 417.0 ([M+Na]+, 81Br); HRMS
In summary, we have studied the reduction of the nitro group of
dipyridinylamines and N-arylpyridin-2-ylamines. All the synthetic
achievements described herein are operationally simple and the
corresponding bi- and trisubstituted amines were easily obtained
by reduction using SnCl2ꢀ2H2O in an alcohol.
calculated for
C
17H22N4O2Br [M+H]+ 393.0926, found 393.0920; 1H NMR
(CDCl3, 400 MHz) d = 1.32 (s, 9H, 3CH3), 1.43 (t, 3H, J = 7.0 Hz, CH3), 4.43 (q, 2H,
J = 7.0 Hz, CH2), 6.68 (dd, 1H, J = 4.8, 7.7 Hz), 7.51 (br s, 1H, NH), 7.75 (dd, 1H,
J = 1.5, 7.7 Hz), 7.85 (br s, 1H, NH), 7.95 (d, 1H, J = 8.6 Hz), 8.22 (dd, 1H, J = 1.5,
4.8 Hz), 8.59 (d, 1H, J = 8.6 Hz); 13C NMR (CDCl3, 100.6 MHz) d = 14.8 (CH3),
27.7 (3CH3), 39.9 (Cq), 62.3 (CH2), 103.9 (CH), 106.7 (Cq), 116.3 (CH), 117.3
(Cq), 129.3 (CH), 140.3 (CH), 145.2 (Cq), 146.6 (CH), 150.8 (Cq), 151.6 (Cq),
176.5 (Cq).
Moreover, it is noteworthy that the 3-bromo dipyridinylamines
substituted at the 50- and 60-positions, represent good starting
materials for other types of functionalization (e.g., cyclizations
via palladium-catalyzed intramolecular C–C bond formation), in
order to obtain new compounds which may be of interest for het-
erocyclic chemistry and medical purposes.
11. Compound 7g: IR (ATR): 796, 1665, 2965 cmꢁ1; MS: m/z = 407.0 ([M+H]+, 79Br),
409.0 ([M+1]+, 81Br), 429.0 ([M+Na]+, 79Br), 431.0 ([M+Na]+, 81Br); HRMS
calculated for
C
18H24N4O2Br [M+H]+ 407.1083, found 407.1098; 1H NMR
(CDCl3, 400 MHz) d = 1.29 (s, 9H, 3CH3), 1.30 (t, 3H, J = 7.0 Hz, CH3), 3.46 (s, 3H),
4.24 (q, 2H, J = 7.0 Hz, CH2), 6.08 (d, 1H, J = 5.3 Hz), 6.98 (dd, 1H, J = 4.7, 7.8 Hz),
7.75 (br s, 1H, NH), 7.88 (dd, 1H, J = 1.6, 7.8 Hz), 8.42–8.45 (m, 2H); 13C NMR
(CDCl3, 100.6 MHz) d = 14.8 (CH3), 27.7 (3CH3), 37.3 (CH3), 39.8 (Cq), 62.0
(CH2), 101.7 (CH), 115.0 (Cq), 118.5 (Cq), 121.3 (CH), 129.3 (CH), 142.3 (CH),
147.7 (CH), 151.2 (Cq), 151.6 (Cq), 156.8 (Cq), 176.4 (Cq).
References and notes
12. The structure of product 7g was also proved by independent synthesis.
1. (a) Kamenecka, T. M.; Bonnefous, C.; Govek, S.; Vernier, J.-M.; Hutchinson, J.;
Chung, J.; Reyes-Manalo, G.; Anderson, J. J. Bioorg. Med. Chem. Lett. 2005, 15,
4350–4353; (b) Cocco, M. T.; Congiu, C.; Lilliu, V.; Onnis, V. Bioorg. Med. Chem.
Lett. 2004, 14, 5787–5791; (c) Mazu, T. K.; Etukala, J. R.; Zhu, X. Y.; Jacob, M. R.;
Khan, S. I.; Walker, L. A.; Ablordeppey, S. Y. Bioorg. Med. Chem. 2011, 19, 524–
533; (d) Antonini, I.; Polucci, P.; Cola, D.; Bontemps-Gracz, M.; Pescalli, N.;
Menta, E.; Martelli, S. Anti-Cancer Drug Des. 1996, 11, 339–349.
2. (a) Patriciu, O.-I.; Fînaru, A.-L.; Massip, S.; Léger, J.-M.; Jarry, C.; Guillaumet, G.
Org. Lett. 2009, 11, 5502–5505; (b) Patriciu, O.-I.; Fînaru, A.-L.; Massip, S.; Léger,
J.-M.; Jarry, C.; Guillaumet, G. Eur. J. Org. Chem. 2009, 3753–3764.
Treatment
of
N-(3-bromopyridin-2-yl)-N-(6-chloro-5-nitropyridin-2-
yl)methylamine (1k) with 10 equiv of NaOEt in absolute EtOH on heating
gave access to the corresponding 6-ethoxy substituted derivative in a 65%
yield. After reduction of the nitro group using SnCl2ꢀ2H2O in EtOH and
protection using the same conditions we obtained the analogous compound 7g
in an 81% yield.
13. Compound 7h: IR (ATR): 1475, 2957, 3438 cmꢁ1; MS: m/z = 393.5 ([M+H]+,
79Br), 395.5 ([M+H]+, 81Br), 415.5 ([M+Na]+, 79Br), 417.5 ([M+Na]+, 81Br); HRMS
calculated for
C
17H22N4O2Br [M+H]+ 393.0911, found 393.0926; 1H NMR
(CDCl3, 400 MHz) d = 1.31 (s, 9H, 3CH3), 1.44 (t, 3H, J = 7.0 Hz, CH3), 4.38 (q, 2H,
J = 7.0 Hz, CH2), 6.74 (d, 1H, J = 5.3 Hz), 7.41 (br s, 1H, NH), 7.61–7.66 (m, 2H),
7.79 (br s, 1H, NH), 8.26 (d, 1H, J = 1.5 Hz), 8.52 (d, 1H, J = 5.3 Hz); 13C NMR
(CDCl3, 100.6 MHz) d = 14.8 (CH3), 27.7 (3CH3), 39.9 (Cq), 62.5 (CH2), 103.0
(CH), 110.4 (Cq), 112.1 (CH), 116.2 (Cq), 129.8 (CH), 140.0 (CH), 146.2 (Cq),
148.7 (CH), 151.8 (Cq), 152.8 (Cq), 176.6 (Cq).
3. Patriciu, O.-I.; Pillard, C.; Fînaru, A.-L.; Sa˘ndulescu, I.; Guillaumet, G. Synthesis
2007, 3868–3876.
4. (a) Caubère, P.; Guillaumet, G.; Rodriguez, I.; Vinter-Pasquier, K.; Kuehm-
Caubère, C.; Blanchard, S.; Atassi, G.; Pierre, A.; Pfeiffer, B.; Renard, P. P. Eur. Pat.
Appl. EP 96986, 1999; Chem. Abstr. 2000, 132, 22978.; (b) Blanchard, S.;
Rodriguez, I.; Tardy, C.; Baldeyrou, B.; Bailly, C.; Colson, P.; Houssier, C.; Léonce,
S.; Kraus-Berthier, L.; Pfeiffer, B.; Renard, P.; Pierre, A.; Caubère, P.; Guillaumet,
G. J. Med. Chem. 2004, 47, 978–987; (c) Grig-Alexa, I. C.; Fînaru, A. L.; Routier, S.;
Bailly, P.; Caubère, P.; Guillaumet, G. Rev. Chim.-Bucharest 2008, 59, 266–268.
5. Bellamy, F. D.; Ou, K. Tetrahedron Lett. 1984, 25, 839–842.
14. Crystal structure data for compound 7h: CCDC 821396. These data can be
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ,
U.K.; e-mail: deposit@ccdc.cam.ac.uk.).
15. (a) Loones, K. T. J.; Maes, B. U. W.; Meyers, C.; Deruytter, J. J. Org. Chem. 2006,
71, 260–264; (b) Kumar, S.; Ila, H.; Junjappa, H. J. Org. Chem. 2009, 74, 7046–
7051; (c) Patriciu, O.-I.; Grig-Alexa, I.-C.; Fînaru, A.-L.; Guillaumet, G.,
unpublished results.
6. (a) Bouissane, L.; El Kazzouli, S.; Rakib, M. E.; Khouili, M.; Léger, J.-M.; Jarry, C.;
Guillaumet, G. Tetrahedron 2005, 61, 8218–8225; (b) Makosza, M.;
Wojciechowski, K. Heterocycles 2001, 54, 445–474; (c) Makosza, M.;
Winiarski, J. Acc. Chem. Res. 1987, 20, 282–289; (d) Makosza, M.; Stalewski, J.
Tetrahedron 1995, 51, 7277–7286; (e) Makosza, M.; Sienkiewiez, K. J. Org. Chem.
1998, 63, 4199–4208.