Asymmetric Intramolecular Hydroamination of Alkynes
were prone to undergo facile epimerization, hampering wide
use of those catalysts.9 Recently, new chiral rare earth metal
catalysts based on noncyclopentadienyl ligands such as chiral
bis(oxazolinates),10 bis(phenolates),11 bis(naphtholates),12 and
bis(naphtholamides)13,14 were developed. However, the enan-
tioselectivities of the hydroamination through those newly
developed ligands have not been improved markedly com-
pared to those through the previously known lanthanocene
ligands. Furthermore, these rare earth metal catalysts are
highly moisture-sensitive and also show a very limited
tolerance to polar functional groups when compared to late
transition metal catalysts. Hence, development of a new
catalytic asymmetric hydroamination using robust late transi-
tion metals, which can be handed more easily, is highly
desired.
nation of aminoalkynes using Pd2(dba)3 ·CHCl3 and PhCOOH
catalytic system in the presence of (R,R)-Renorphos as a chiral
ligand, which produced five- and six-membered nitrogen
heterocycles in good yields with good to high ee’s (eq 2). The
use of the ordinary conditions A, 5 mol % of Pd2(dba)3 ·CHCl3,
10 mol % of PhCOOH, and 25 mol % of (R,R)-Renorphos, gave
good to fair enantioselectivities. To obtain higher enantiose-
lectivities (81-91% ee), we had to use the conditions B, 20
mol % of Pd2(dba)3 ·CHCl3, 40 mol % of PhCOOH, and 100
mol % of (R,R)-Renorphos.18
Previously, we reported an entirely new method for the
addition of carbon pronucleophiles15 to alkynes in the presence
of a Pd(0)/carboxylic acid combined catalyst, and it was
extended to the addition of nitrogen16 and oxygen17 nucleophiles
to alkynes (eq 1). These results encouraged us to develop a
catalytic asymmetric hydroamination method.18 Accordingly,
we developed a catalytic asymmetric intramolecular hydroami-
The use of a stoichiometric amount of the expensive chiral
ligand for obtaining a better yield and enantioselectivity was a
drawback for this reaction. During this investigation, we
examined various commercially available bisphosphine ligands19
and realized that only Renorphos was effective. In the hy-
droamination of aminoalkynes using Norphos ligand, the product
was obtained in a very low yield, but with a better enantiose-
lectivity, compared to Renorphos. From these results, it is clear
that a small change in the norbornane framework of the
bisphosphine ligands gave a drastic change both in the rate of
reaction and in the enantioselectivity of the hydroamination of
aminoalkynes. Therefore, we prepared various Norphos and
Renorphos derivatives (Figure 1) and investigated the effective-
ness and usefulness of these ligands in the catalytic asymmetric
intramolecular hydroamination of aminoalkynes.
(3) (a) Ates, A.; Quinet, C. Eur. J. Org. Chem. 2003, 9, 1623–1626. (b)
Horrillo Martnez, P.; Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006, 2221–
2223.
(4) (a) Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005,
127, 2042–2043. (b) Datta, S.; Roesky, P. W.; Blechert, S. Organometallics
2007, 26, 4392–4394.
(5) (a) Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108–
4109. (b) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114,
275–294. (c) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295–9306. (d)
Roesky, P. W.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 4705–
4711. (e) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757–1771. (f)
Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998, 120,
4871–4872. (g) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am.
Chem. Soc. 1999, 121, 3633–3639. (h) Hong, S.; Marks, T. J. J. Am. Chem.
Soc. 2002, 124, 7886–7887. (i) Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem.
Soc. 2003, 125, 12584–12605.
(6) (a) Burgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics 1998,
17, 1452–1454. (b) Burgstein, M. R.; Berberich, H.; Roesky, P. W. Chem.sEur.
J. 2001, 7, 3078–3085.
(7) (a) Kim, Y. K.; Livinghouse, T.; Bercaw, J. E. Tetrahedron Lett. 2001,
42, 2933–2935. (b) Kim, Y. K.; Livinghouse, T. Angew. Chem. 2002, 114, 3797-
3799; Angew. Chem., Int. Ed. 2002, 41, 3645-3647. (c) Kim, Y. K.; Livinghouse,
T.; Horino, Y. J. Am. Chem. Soc. 2003, 125, 9560–9561.
(8) (a) Dorta, R.; Egli, P.; Zurcher, F.; Togni, A. J. Am. Chem. Soc. 1997,
119, 10857–10858. (b) Lober, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem.
Soc. 2001, 123, 4366–4367. (c) Roesky, P. W.; Muller, T. E. Angew. Chem.,
Int. Ed. 2003, 42, 2708–2710. (d) Hultzsch, K. C. Org. Biomol. Chem. 2005, 3,
1819–1824. (e) Hultzsch, K. C. AdV. Synth. Catal. 2005, 347, 367–391. (f) Hii,
K. K. Pure Appl. Chem. 2006, 78, 341–349. (g) Birkov, D. V.; Hultzsch, K. C.;
Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748–3759.
(9) (a) Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagne, M.; Marks,
T. J. J. Am. Chem. Soc. 1994, 116, 10241–10254. (b) Douglass, M. R.;
Ogasawara, M.; Hong, S.; Metz, M. V.; Marks, T. J. Organometallics 2002, 21,
283–292. (c) Hong, S.; Marks, T. J. J. Am. Chem. Soc. 2002, 124, 7886–7887.
(10) Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J. Am. Chem. Soc. 2003,
125, 14768–14783.
(16) (a) Kadota, I.; Shibuya, A.; Lutete, M. L.; Yamamoto, Y. J. Org. Chem.
1999, 64, 4570–4571. (b) Lutete, M. L.; Kadota, I.; Shibuya, A.; Yamamoto, Y.
Heterocycles 2002, 58, 347–357. (c) Bajracharya, G. B.; Huo, Z.; Yamamoto,
Y. J. Org. Chem. 2005, 70, 4883–4886. (d) Patil, N. T.; Huo, Z. H.; Bajrcharya,
G. B.; Yamamoto, Y. J. Org. Chem. 2006, 71, 3612–3614. (e) Patil, N. T.; Lutete,
M. L.; Wu, H.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem.
2006, 71, 4270–4279. (f) Patil, N. T.; Wu, H.; Yamamoto, Y. J. Org. Chem.
2007, 72, 6577–6579.
(17) (a) Kadota, I.; Lutete, M. L.; Shibuya, A.; Yamamoto, Y. Tetrahedron
Lett. 2001, 42, 6207–6210. (b) Patil, N. T.; Pahadi, N. K.; Yamamoto, Y. Can.
J. Chem. 2005, 83, 569–573. For the related reference, see: (c) Patil, N. T.;
Khan, N. F.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 8497–8499. (d) Zhang,
W.; Haight, A. R.; Hsu, M. C. Tetrahedron Lett. 2002, 43, 6575–6578. (e) Huo,
Z. H.; Patil, N. T.; Jin, T.; Pahadi, N. K.; Yamamoto, Y. AdV. Synth. Catal.
2007, 349, 680–684.
(11) (a) O’Shaughnessy, P. N.; Scott, P. Tetrahedron: Asymmetry 2003, 14,
1979–1983. (b) O’Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie,
K. M.; Scott, P. Chem. Commun. 2003, 1770–1771.
(12) (a) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. Chem.sEur. J. 2003,
9, 4796–4810. (b) Hultzsch, K. C.; Gribkov, D. V. Chem. Commun. 2004, 730–
731. (c) Hultzsch, K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23,
2601–2612.
(13) (a) Collin, J.; Daran, J.-C.; Schulz, E.; Trifonov, A. Chem. Commun.
2003, 3048–3049. (b) Collin, J.; Daran, J.-C.; Jacquet, O.; Schulz, E.; Trifonov,
A. Chem.sEur. J. 2005, 11, 3455–3462. (c) Riegert, D.; Collin, J.; Meddour,
A.; Schulz, E.; Trifonov, A. J. Org. Chem. 2006, 71, 2514–2517.
(14) Kim, J. Y.; Livinghouse, T. Org. Lett. 2005, 7, 1737–1739.
(15) For the references on the addition of carbon pronucleophiles to alkynes,
see: (a) Kadota, I.; Shibuya, A.; Gyoung, Y. S.; Yamamoto, Y. J. Am. Chem.
Soc. 1998, 120, 10262–10263. (b) Patil, N. T.; Kadota, I.; Shibuya, A.; Gyoung,
Y. S.; Yamamoto, Y. AdV. Synth. Catal. 2004, 346, 800–804. (c) Patil, N. T.;
Yamamoto, Y. J. Org. Chem. 2004, 69, 6478–6481. (d) Patil, N. T.; Wu, H.;
Kadota, I.; Yamamoto, Y. J. Org. Chem. 2004, 69, 8745–8750.
(18) For a preliminary communication, see: Lutete, M. L.; Kadota, I.;
Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 1622–1623. The key observations
in the previous communication are following. A NH-Nf group is much less
common than NH-Tf or NH-Ts, but NH-Nf gave better ee’s and chemical yields
than the other protective groups. The reaction without a protective group, that
is, the reaction using-NH2 itself, gave lower ee’s. The hydroamination of 15a
did not proceed at all in the absence of PhCOOH, and the starting material was
recovered. A reviewer asked what would happen in the presence of 10 mol %
of a base under the standard conditions (Table 2, entry 5). The reaction of 15a
in the presence of Cs2CO3 or tricyclohexylamine gave lower ee’s and lower
yields. The reaction in the presence of tricyclohexylphosphine gave 16a with
87% ee and 93% yield.
(19) Patil, N. T.; Lutete, L. M.; Wu, H.; Pahadi, N. K.; Gridnev, I. D.;
Yamamoto, Y. J. Org. Chem. 2006, 71, 4270–4279. We have tested various
bisphosphine ligands such as QUINAP, BINAP, MOP, Trost ligand, Me-BPE,
Me-DUPHOS, Me-FerroTane, PHANEPHOS, CHIRAPHOS, NORPHOS, BDPP,
PROPHOS, DIOP, BPPM, JOSIPHOS, and BPPFOAc in the hydroamination
of alkynes. However, unsatisfactory results were obtained.
J. Org. Chem. Vol. 73, No. 24, 2008 9699