such as ligand development and material construction, which
are currently under investigation.
We thank the support from NSF (CHE-0844602).
Notes and references
1 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2001, 40, 2004–2021; (b) C. W. Tornøe, C. Christensen
and M. Meldal, J. Org. Chem., 2002, 67, 3057–3062; (c) V. V.
Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596–2599.
2 (a) A. Dondoni, Angew. Chem., Int. Ed., 2008, 47, 8995–8997;
(b) A. Gole and C. J. Murphy, Langmuir, 2008, 24, 266–272;
(c) T. Gadzikwa, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis,
J. T. Hupp and S. T. Nguyen, J. Am. Chem. Soc., 2009, 131,
13613–13615; (d) P. L. Golas and K. Matyjaszewski, Chem. Soc.
Rev., 2010, 39, 1338–1354; (e) C. Chu and R. Liu, Chem. Soc. Rev.,
2011, 40, 2177–2188; (f) W. Yan, Q. Wang, Q. Lin, M. Li,
J. L. Petersen and X. Shi, Chem.–Eur. J., 2011, 17, 5011–5018.
3 (a) A. D. Moorhouse, A. M. Santos, M. Gunaratnam, M. Moore,
S. Neidle and J. E. Moses, J. Am. Chem. Soc., 2006, 128,
15972–15973; (b) R. Kumar, A. El-Sagheer, J. Tumpane,
P. Lincoln, L. M. Wilhelmsson and T. Brown, J. Am. Chem. Soc.,
2007, 129, 6859–6864; (c) S. K. Mamidyala and M. G. Finn, Chem.
Soc. Rev., 2010, 39, 1252–1261; (d) C. Waengler, S. Maschauer,
O. Prante, M. Schaefer, R. Schirrmacher, P. Bartenstein,
M. Eisenhut and B. Waengler, ChemBioChem, 2010, 11,
2168–2181; (e) A. Sharma, K. Neibert, R. Sharma, R. Hourani,
D. Maysinger and A. Kakkar, Macromolecules, 2011, 44, 521–529.
4 (a) M. Whiting, J. Muldoon, Y. C. Lin, S. M. Silverman,
W. Lindstrom, A. J. Olson, H. C. Kolb, M. G. Finn,
K. B. Sharpless, J. H. Elder and V. V. Fokin, Angew. Chem.,
Int. Ed., 2006, 45, 1435–1439; (b) G. C. Tron, T. Pirali, R. A.
Billington, P. L. Canonico, G. Sorba and A. A. Genazzani,
Med. Res. Rev., 2008, 28, 278–308; (c) S. R. Gracia, K. Gaus
and N. Sewald, Future Med. Chem., 2009, 1, 1289–1310;
(d) N. Willand, M. Desroses, P. Toto, B. Dirie, Z. Lens,
V. Villeret, P. Rucktooa, C. Locht, A. Baulard and B. Deprez,
ACS Chem. Biol., 2010, 5, 1007–1013.
5 (a) J. Kalisiak, K. B. Sharpless and V. V. Fokin, Org. Lett., 2008,
10, 3171–3174; (b) Y. Chen, Y. Liu, J. L. Petersen and
X. Shi, Chem. Commun., 2008, 3254–3256; (c) X. J. Wang,
L. Zhang, D. Krishnamurthy, C. H. Senanayake and P. Wipf,
Org. Lett., 2009, 11, 4632–4635; (d) N. Haddad, D. C. Reeves,
D. Krishnamurthy and C. H. Senanayake, Org. Lett., 2009, 11,
5490–5493; (e) W. Yan, T. Liao, O. Tuguldur, C. Zhong,
J. L. Petersen and X. Shi, Chem.–Asian. J., 2011, 6, 2720–2724.
6 (a) Y. Liu, W. Yan, Y. Chen, J. L. Petersen and X. Shi, Org. Lett.,
2008, 10, 5389–5392; (b) S. W. Kwok, J. R. Fotsing, R. J. Fraser,
V. O. Rodionov and V. V. Fokin, Org. Lett., 2010, 12, 4217–4219;
(c) J. H. Li, Y. Q. Zhang, D. Wang, W. Wang, T. T. Gao, L. Wang,
J. T. Li, G. S. Huang and B. H. Chen, Synlett, 2010, 1617–1622;
(d) X. J. Wang, L. Zhang, D. Krishnamurthy, C. H. Senanayake
and P. Wipf, Org. Lett., 2010, 12, 4632–4635; (e) S. Ueda, M. J. Su
and S. L. Buchwald, Angew. Chem., Int. Ed., 2011, 50, 8944–8947.
7 H. Duan, W. Yan, S. Sengupta and X. Shi, Bioorg. Med. Chem.
Lett., 2009, 19, 3899–3902.
Fig. 2 Extending the substrate scope with propargyl acetate.a,b
Scheme 5 TMS-deprotection and X-ray crystal structures.
benzene ring. Interestingly, although the triazole ring was a
highly electron-deficient aromatic ring, allene bis-triazole 4u was
obtained in modest yield under the standard conditions, suggesting
the potential coordination of triazole–Fe in the activation of a
propargyl C–O bond. To further extend the substrate group of
the electron-deficient ring, propargyl acetates 6 were prepared
to react with triazoles. The desired allene triazoles (4v–4z) with
electron-withdrawing group substitutions were received in
good to excellent yields as shown in Fig. 2.
As we mentioned at the beginning, the allene-triazole shows
significantly higher stability than the regular allene. For
example, upon treating allene 4a with 2 equivalents of TfOH
in wet DCM at room temperature, no allene decomposition
(even the TMS deprotection) was observed after 12 hours
based on the recovered yield of 4a (97%). The TMS group
could be readily removed by treatment with base as shown in
Scheme 5.
The X-ray crystal structures not only confirmed the formation
of the allene-triazoles, but also revealed the detailed configu-
ration. Among all five allene-triazole crystal structures (4a, 4g,
4u, 4y and 7a), excellent conjugations between a triazole ring
and the allene p-bond were observed, even with bulky TMS
groups on the same carbon center. This extended conjugation
likely accounted for the improved allene stability.
8 W. Yan, Q. Wang, Y. Chen, J. L. Petersen and X. Shi, Org. Lett.,
2010, 12, 3308–3311.
9 (a) C. A. Dyker, V. Lavallo, B. Donnadieu and G. Bertrand,
Angew. Chem., Int. Ed., 2008, 47, 3206–3209; (b) C. Esterhuysen
and G. Frenking, Chem.–Eur. J., 2011, 17, 9944–9956;
(c) M. Alcarazo, Dalton Trans., 2011, 40, 1839–1845.
10 Reviews for allene chemistry: (a) R. Zimmer, C. U. Dinesh,
E. Nandanan and F. A. Khan, Chem. Rev., 2000, 100, 3067–3126;
(b) R. W. Bates and V. Satcharoen, Chem. Soc. Rev., 2002, 31, 12–21;
(c) L. K. Sydnes, Chem. Rev., 2003, 103, 1133–1150; (d) A. Hoffmann-
Roder and N. Krause, Angew. Chem., Int. Ed., 2004, 43, 1196–1216;
(e) S. Ma, Chem. Rev., 2005, 105, 2829–2872.
Herein, we report the first synthesis of allene-substituted
1,2,3-triazole derivatives. With the improved allene stability,
the allene-triazoles are expected to exhibit potential new reactivity
that may lead to interesting chemical and physical properties,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3521–3523 3523