LETTER
Synthetic Study of Versipelostatin A
399
(10) Roush, W. R.; Reilly, M. L.; Koyama, K.; Brown, B. B.
J. Org. Chem. 1997, 62, 8708.
TBSCl, imidazole
DMF, r.t.
LiAlH4, THF
0 °C
(11) Boeckmann, R. K.; Shao, P.; Wrobleski, S. T.; Boehmler,
D. J.; Heintzelman, G. R.; Barbosa, A. J. J. Am. Chem. Soc.
2006, 128, 10572.
11
HO
2 steps 70%
MeO
O
(12) Roush, W. R.; Barda, D. A. Tetrahedron Lett. 1997, 38,
O
8781.
13
(13) Roush, W. R.; Barda, D. A. Tetrahedron Lett. 1997, 38,
8785.
t-BuLi, THF
PhCHO
(14) Jones, B. D.; La Clair, J. J.; Moore, C. E.; Rheingold, A. L.;
Burkart, M. D. Org. Lett. 2010, 12, 4516.
TBSO
–78 °C to 0 °C
MeO
HO
O
(15) The 1H NMR spectrum of crude 3 indicated that this material
is present as a single diastereomer. Complete consumption
of (R)-pulegone was also confirmed
TBSO
63%
MeO
O
O
O
(16) Mukaiyama, T.; Matsuo, J.; Kitagawa, H. Chem. Lett. 2000,
11, 1250.
14
(17) NOESY correlations were observed between 6-Me, 9-Me
and 10-Hb of compound 7
15
Scheme 4 Synthesis of key intermediate 14 and its alkylation
(18) Ireland–Claisen rearrangements of acetates of tertiary
alcohols have been reported, see: (a) Giró-Mañas, C.;
Paddock, V. L.; Bochet, C. G.; Spivey, A. C.; White, A. J.
P.; Mann, I.; Oppolzer, W. J. Am. Chem. Soc. 2010, 132,
5176. (b) Haning, H.; Giró-Mañas, C.; Paddock, V. L.;
Bochet, C. G.; White, A. J. P.; Bernardinelli, G.; Mann, I.;
Oppolzer, W.; Spivey, A. C. Org. Biomol. Chem. 2011, 9,
2809.
In summary, we have achieved an efficient stereoselective
synthesis of the enantiomeric spirotetronate unit 14 of ver-
sipelostatin A (1). The overall yield was 8.9% in ten steps
starting from commercially available (R)-pulegone. This
synthetic method is thought to be applicable to other
spirotetronate-based natural products. In addition, we per-
formed a model study of the coupling reaction of the
spirotetronate unit and the acylated octalin unit using ben-
zaldehyde as an electrophile. Our continuing research to-
wards the synthesis of versipelostatin A, including the
synthesis of other coupling partners and studies on cy-
clizations, is in progress.
(19) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom,
T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem.
Soc. 1970, 92, 741.
(20) Fukazawa, T.; Shimoji, Y.; Hashimoto, T. Tetrahedron:
Asymmetry 1996, 6, 1649.
(21) Bohno, M.; Sugie, K.; Imase, H.; Yusof, Y. B.; Oishi, T.;
Chida, N. Tetrahedron 2007, 63, 6977.
(22) Tanimoto, H.; Kato, H.; Chida, N. Tetrahedron Lett. 2007,
48, 6267.
(23) Analytical data for (5R,6S,9S)-6-[2-(tert-butyldimethyl-
silyloxy)ethyl]-4-methoxy-6,8,9-trimethyl-1-oxaspiro-
[4.5]deca-3,7-dien-2-one (14): [a]D26 –16 (c 0.46, CHCl3);
IR (Nujol): 2956, 1760, 1628, 1089, 962 cm–1; 1H NMR (400
MHz, CDCl3): d = 0.04 (s, 6 H), 0.88 (s, 9 H), 0.89 (s, 3 H),
1.04 (d, J = 7.3 Hz, 3 H), 1.66 (s, 3 H), 1.72–1.83 (m, 2 H),
1.85 (dd, J = 13.7, 6.4 Hz, 1 H), 2.03 (dd, J = 13.7, 10.0 Hz,
1 H), 2.37 (m, 1 H), 3.67–3.75 (m, 2 H), 3.78 (s, 3 H), 4.99
(s, 1 H), 5.10 (s, 1 H); 13C NMR (100 MHz, CDCl3): d =
–5.3, –5.3, 18.2, 19.5, 20.9, 21.2, 25.9, 32.6, 37.6, 39.8, 42.2,
59.2, 60.0, 88.5, 88.9, 127.4, 136.2, 171.9, 186.0; MS (ESI-
TOF): m/z [M + Na]+ calcd for C21H36NaO4Si: 403.2275;
found: 403.2247
Supporting Information for this article is available online at
Acknowledgment
We gratefully acknowledge Prof. Dr. H. Watanabe, Prof. Dr. K.
Ishigami and Mr. M. Yamamoto at the University of Tokyo for re-
cording the HRMS spectra. This work was partially supported by a
Grant-in-Aid for Scientific Research (23780121) from the Japanese
Ministry of Education, Culture, Sports, Science and Technology.
(24) Roush, W. R.; Barda, D. A.; Limberakis, C.; Kunz, R. K.
Tetrahedron 2002, 58, 6433.
References and Notes
(25) Preparation of (5R,6S,9S)-6-[2-(tert-butyldimethylsilyl-
oxy)ethyl]-3-[(RS)-1-hydroxybenzyl]-4-methoxy-6,8,9-
trimethyl-1-oxaspiro[4.5]deca-3,7-dien-2-one (15): To a
solution of tetronate 14 (21 mg, 0.066 mmol) in THF (2 mL),
was added a solution of tert-butyllithium (1.0 M in pentane,
49 mL, 0.085 mmol) at –78 °C under argon and the mixture
was stirred for 10 min. To the mixture was then added
benzaldehyde (8.6 mL, 0.085 mmol). After stirring for 20
min, the reaction mixture was poured into saturated aqueous
NH4Cl and extracted with EtOAc. The organic layer was
washed with water and brine, dried over anhydrous MgSO4
and concentrated in vacuo. The residue was subjected to
flash chromatography over silica gel (hexanes–acetone,
12:1) to give a 6:4 mixture of diastereomers of 15 (17 mg,
63%) as an amorphous solid. [a]D26 –11 (c 0.46, CHCl3); IR
(Nujol): 3423, 1725, 1635, 1067, 836 cm–1; 1H NMR (400
MHz, CDCl3): d = 0.04, 0.04, 0.05 (3 × s, total 6 H, TBS),
(1) Park, H.-R.; Furihata, K.; Hayakawa, Y.; Shin-ya, K.
Tetrahedron Lett. 2002, 43, 6941.
(2) Kaufman, R. J. Genes Dev. 1999, 13, 1211.
(3) Katschinski, D. M.; Jacobsen, E. L.; Wiedmann, G. J.;
Robins, H. I. J. Cancer. Res. Clin. Oncol. 2001, 127, 425.
(4) Park, H.-R.; Chijiwa, S.; Furihata, K.; Hayakawa, Y.; Shin-
ya, K. Org. Lett. 2007, 9, 1457.
(5) Tanaka, H.; Yoshizawa, A.; Chijiwa, S.; Ueda, J.; Takagi,
M.; Shin-ya, K.; Takahashi, T. Chem. Asian J. 2009, 4, 1114.
(6) Zografos, A. L.; Georgiadis, D. Synthesis 2006, 3157.
(7) Schobert, R.; Schlenk, A. Bioorg. Med. Chem. 2008, 16,
4203.
(8) Takeda, K.; Kato, H.; Sasahara, H.; Yoshii, E. J. Chem. Soc.,
Chem. Commun. 1986, 1197.
(9) Takeda, K.; Kawanishi, E.; Nakamura, H.; Yoshii, E.
Tetrahedron Lett. 1991, 32, 4925.
© Thieme Stuttgart · New York
Synlett 2012, 23, 397–400