C O M M U N I C A T I O N S
Table 2. Cyanation of Benzaldehyde with 3 Catalyzed by Lewis
Table 4. Cyanation of Aldehydes with 2 and 3 Catalyzed by 7 in
the Presence of Et3N
Basesa
entry
Lewis base (%)
equiv of 3
time (h)
% convb
% ee (S)c
1
2
3
4
5
6
7
DMAP (10)
DABCO (10)
Et3N (10)
2
2
2
2
2
2
2
8
8
8
8
8
8
8
<1
<1
13
16
23
9
DIEA (10)
sparteine (10)
cinchonidine (10)
quinine (10)
0
40
15
entry
aldehyde (R)
2/3
product
time (h)
% yielda
% eeb
2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4a
4a
Ph
Ph
2
3
2
3
2
3
2
3
2
3
2
3
2
3
5a
6a
5b
6b
5c
6c
5d
6d
5e
6e
5f
4
10
6
10
6
12
4
8
7
12
5
6
5
95
89
88
90
79
72
90
89
97
64
81
84
83
89
92
94
94
96
94
94
93
95
93
93
73
76
89
90
a All reactions were run at -40 °C. b Determined by GC-MS. c Deter-
mined by chiral GC.
4b 4-CH3-C6H4
4b 4-CH3-C6H4
Table 3. Cyanation of Benzaldehyde with 2 Catalyzed by 7 in the
Presence of Lewis Bases at -40 °C
4c
4c
4-CH3O-C6H4
4-CH3O-C6H4
4d 4-Cl-C6H4
4d 4-Cl-C6H4
4e
4e
4f
4f
4g
4g
entry
% 7
Lewis base (%)
equiv of 2
time (h)
% convb
% ee (S)c
1a
2a
3
4
5
6
7
8
9
10
11
12
13
14
15
16
5
1
5
5
5
1
5
5
5
5
5
5
2
2
2
2
2
2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
18
19
4
3
2
8
8
7
3
3
3
4
4
3
7
7
100
100
99
96
93
78
95
90
97
96
98
98
93
98
93
97
95
83
93
91
86
95
94
90
92
89
78
94
93
-79
-94
-94
(E)-PhCHdCH
(E)-PhCHdCH
(CH3)3C
(CH3)3C
CH3(CH2)4
CH3(CH2)4
DMAP (10)
DMAP (15)
DMAP (20)
DMAP (2)
DMAP (10)
DABCO (10)
Et3N (10)
6f
5g
6g
6
a
Isolated yield. b Determined by chiral GC.
DIEA (10)
residing in different molecules, allows facile structural variations
and, thereby, tuning of the catalytic properties. The scope and
mechanism of this new dual Lewis acid-Lewis base activation are
under investigation.
sparteine (10)
cinchonidine (10)
quinine (10)
sparteine (10)
cinchonidine (10)
quinine (10)
5
5d
5d
5d
Acknowledgment. This work was financed by the Swedish
Foundation for Strategic Research.
a Reactions were run at -42 °C. b Determined by GC-MS. c Determined
by chiral GC. d ent-7 was used.
Supporting Information Available: Experimental procedures and
analytical data. This material is available free of charge via the Internet
DMAP (2 mol %) in reactions using 1 mol % of 7 resulted in a
product with higher enantiomeric excess (entries 2 and 6). Use of
5 mol % of catalyst, 10 mol % of DMAP, and a smaller excess,
1.2 equiv, of cyanoformate afforded 95% conversion and 94% ee
within 7 h (entry 7).
Et3N and DIEA were found to give essentially quantitative
reactions within 3 h, with only minor decrease in selectivity (entries
9 and 10), whereas sparteine exhibited high reactivity but lower
enantioselectivity (entry 11). The use of other chiral bases did not
offer any major advantages (entries 12 and 13). Replacement of 7
by ent-7 had only a marginal effect on the selectivity but resulted
in slower reactions in the case of cinchonidine and quinine (entries
15 and 16).
References
(1) (a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. ComprehensiVe Asymmetric
Catalysis; Springer: Berlin, 1999. (b) Gregory, R. J. H. Chem. ReV. 1999,
99, 3649-3682. (c) Effenberger, F. Angew. Chem., Int. Ed. Engl. 1994,
33, 1555-1564.
(2) (a) Brunel, J.-M.; Holmes, I. P. Angew. Chem., Int. Ed. 2004, 43, 2752-
2778. (b) North, M. Tetrahedron: Asymmetry 2003, 14, 147-176.
(3) (a) Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2002, 41, 3636-3638. (b) Tian, J.; Yamagiwa, N.; Matsunaga,
S.; Shibasaki, M. Org. Lett. 2003, 5, 3021-3024. (c) Casas, J.; Baeza,
A.; Sansano, J. M.; Na´jera, C.; Saa´, J. M. Tetrahedron: Asymmetry 2003,
14, 197-200. (d) Yamagiwa, N.; Tian, J.; Matsunaga, S.; Shibasaki, M.
J. Am. Chem. Soc. 2005, 127, 3413-3422.
(4) Belokon, Y. N.; Blacker, A. J.; Clutterbuck, L. A.; North, M. Org. Lett.
2003, 5, 4505-4507.
(5) Okimoto, M.; Chiba, T. Synthesis 1996, 1188-1190.
Triethylamine was selected for further studies since it provided
the product with high conversion and enantioselectivity. A variety
of aromatic and aliphatic aldehydes were subjected to cyanation
by both 2 and 3 using the combination of 7 and Et3N. The results
are summarized in Table 4. In all cases, the reaction readily took
place giving O-protected cyanohydrins with high enantioselectivities
and in high isolated yields.
The present methodology provides direct access to enantioen-
riched O-alkoxycarbonylated (5) and O-acetylated (6) cyanohydrins,
which are important synthetic targets.1b The latter type of com-
pounds are also accessible by the use of potassium cyanide and 7
in the presence of a trapping agent, such as an anhydride.13 In our
hands, this procedure, using the Ti-salen catalyst system, was less
clean, resulting in the formation of several byproducts in addition
to 1 equiv of potassium acetate. In contrast, higher selectivity and
essentially quantitative conversion without formation of byproducts
as well as perfect atom economy were achieved using our new dual
activation protocol. In this case, a catalytically formed acetylated
Lewis base probably serves as acetylating agent. The catalytic
system employed, with the Lewis acidic and Lewis basic sites
(6) (a) Berthiaume, D.; Poirier, D. Tetrahedron 2000, 56, 5995-6003. (b)
Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195-6196. (c)
Deardorff, D. R.; Taniguchi, C. M.; Tafti, S. A.; Kim, H. Y.; Choi, S. Y.;
Downey, K. J.; Nguyen, T. V. J. Org. Chem. 2001, 66, 7191-7194.
(7) Hoffmann, H. M. R.; Ismail, Z. M.; Hollweg, R.; Zein, A. R. Bull. Chem.
Soc. Jpn. 1990, 63, 1807-1810.
(8) Scholl, M.; Lim, C.-K.; Fu, G. C. J. Org. Chem. 1995, 60, 6229-6231.
(9) Additions of other R-ketonitriles to aldehydes have also been described:
(a) Watahiki, T.; Ohba, S.; Oriyama, T. Org. Lett. 2003, 5, 2679-2681.
(b) Ishino, Y.; Mihara, M.; Takeuchi, T.; Takemoto, M. Tetrahedron Lett.
2004, 45, 3503-3506.
(10) Belokon, Y. N.; Caveda-Cepas, S.; Green, B.; Ikonnikov, N. S.; Khrustalev,
V. N.; Larichev, V. S.; Moscalenko, M. A.; North, M.; Orizu, C.; Tararov,
V. I.; Tasinazzo, M.; Timofeeva, G. I.; Yashkina, L. V. J. Am. Chem.
Soc. 1999, 121, 3968-3973.
(11) (a) Shibasaki, M.; Kanai, M.; Funabashi, K. Chem. Commun. 2002, 1989-
1999. (b) Matsunaga, S.; Ohshima, T.; Shibasaki, M. AdV. Synth. Catal.
2002, 344, 3-15. (c) Shibasaki, M.; Kanai, M. Chem. Pharm. Bull. 2001,
49, 511-524.
(12) (a) Kanemasa, S.; Ito, K. Eur. J. Org. Chem. 2004, 4741-4753. (b) Ma,
J.-A.; Cahard, D. Angew. Chem., Int. Ed. 2004, 43, 4566-4583.
(13) (a) Belokon, Y. N.; Gutnov, A. V.; Moskalenko, M. A.; Yashkina, L. V.;
Lesovoy, D. E.; Ikonnikov, N. S.; Larichev, V. S.; North, M. Chem.
Commun. 2002, 244-245. (b) Belokon, Y. N.; Carta, P.; Gutnov, A. V.;
Maleev, V.; Moskalenko, M. A.; Yashkina, L. V.; Ikonnikov, N. S.;
Voskoboev, N. V.; Khrustalev, V. N.; North, M. HelV. Chim. Acta 2002,
85, 3301-3312.
JA052804Q
9
J. AM. CHEM. SOC. VOL. 127, NO. 33, 2005 11593