Organic & Biomolecular Chemistry
Communication
Notes and references
1 (a) H. M. R. Hoffmann and J. Rabe, Angew. Chem., Int. Ed.
Engl., 1985, 24, 94; (b) S. S. C. Koch and A. R. Chamberlin,
Studies in Natural Products Chemistry, ed. Atta-ur-Rahman,
Elsevier Science, 1995, vol. 16, p. 687.
2 R. Bandichhor, B. Nosse and O. Reiser, Top. Curr. Chem.,
2005, 243, 43.
3 (a) M. S. Maier, D. I. G. Marimon, C. A. Stortz and
M. T. Adler, J. Nat. Prod., 1999, 62, 1565; (b) B. K. Park,
M. Nakagawa, M. A. Hirota and M. Nakayama, J. Antibiot.,
1988, 41, 751.
Fig. 4 Stereochemical rationale.
4 B. Mao, M. Fañanás-Mastral and B. L. Feringa, Chem. Rev.,
2017, 117, 10502.
transition state are hampered (relative to the other aromatic
substrates) in this instance. With regards to the alkyl substitu-
ents: ethyl- and propyl-substituted analogues (i.e. leading to
products 54–55 and 62–63) could be resolved with S* of 7.6
and 7.7 respectively, while the bulkier isopropyl-variants 56
and 64 were formed in a less selective process which still had
an associated S* of 5.3.
A single recrystallisation of the major lactone diastereomer
produced by the reaction afforded an enantiomerically pure
sample of 57 (>99% ee) which was suitable for single crystal
X-ray diffraction pattern analysis (see ESI†). The absolute con-
figuration of 57 (Fig. 3) was subsequently assigned as (S,S,S).21
5 Selected other reviews: (a) I. Collins, J. Chem. Soc., Perkin
Trans. 1, 1998, 1869; (b) N. B. Carter, A. E. Nadany and
J. B. Sweeney, J. Chem. Soc., Perkin Trans. 1, 2002, 2324;
(c) M. Seitz and O. Reiser, Curr. Opin. Chem. Biol., 2005, 9,
285; (d) R. R. A. Kitson, A. Millemaggi and R. J. K. Taylor,
Angew. Chem., Int. Ed., 2009, 48, 9426; (e) S. Gil, M. Parra,
P. Rodriguez and J. Segura, Mini-Rev. Org. Chem., 2009, 6,
345.
6 For examples of such transformations see: (a) A. F. Barrero,
A. Rosales, J. M. Cuerva and J. E. Oltra, Org. Lett., 2003, 5,
1935; (b) F. F. P. Arantes, L. C. A. Barbosa, E. S. Alvarenga,
A. J. Demuner, D. P. Bezerra, J. R. O. Ferreira, L. V. Costa-
Lotufo, C. Pessoa and M. O. Moraes, Eur. J. Med. Chem.,
2009, 44, 3739.
A
stereochemical rationale consistent with the calculated
mechanism9h for these types of reactions is presented in Fig. 4.
In summary, we have developed the first kinetic resolution
(in the traditional sense) of racemic chiral anhydrides. The
reaction provides access to resolved enantioenriched anhy-
drides for the first time, which can be ring-opened and esteri-
fied in situ to form synthetically valuable 2,3-disubstituted suc-
cinate esters. The resolution processes were accompanied with
the simultaneous formation of stereochemically dense
α-alkylated γ-butyrolactones via control over 3 contiguous
stereocentres (one quaternary) with modest to excellent
enantioselectivity (up to 94% ee, S* = 10.5) and excellent dia-
stereocontrol. These reactions were mediated by a new class of
chiral sulfamide bifunctional catalysts based on a cinchona
alkaloid scaffold, the bulkiest of which bears an adamantyl
unit and easily outperforms more traditional bifunctional cata-
lyst structures in this process. Studies to further improve the
performance and scope of this new KR process as well as the
evaluation of the potential of the novel alkaloid-based sulfa-
mide organocatalysts are underway.
7 R. R. A. Kitson, A. Millemaggi and R. J. K. Taylor, Angew.
Chem., Int. Ed., 2009, 48, 9426.
8 F. Manoni, C. Cornaggia, J. Murray, S. Tallon and
S. J. Connon, Chem. Commun., 2012, 48, 6502.
9 For related reactions see: (a) C. Cornaggia, F. Manoni,
E. Torrente, S. Tallon and S. J. Connon, Org. Lett., 2012, 14,
1850; (b) F. Manoni and S. J. Connon, Angew. Chem., Int.
Ed., 2014, 53, 2628; (c) C. Cornaggia, S. Gundala,
F. Manoni, N. Gopalasetty and S. J. Connon, Org. Biomol.
Chem., 2016, 14, 3040; (d) S. A. Cronin, A. Gutiérrez Collar,
S. Gundala, C. Cornaggia, E. Torrente, F. Manoni, A. Botte,
B. Twamley and S. J. Connon, Org. Biomol. Chem., 2016, 14,
6955; (e) F. Manoni, U. Farid, C. Trujillo and S. J. Connon,
Org. Biomol. Chem., 2017, 15, 1463; (f) C. L. Jarvis,
J. S. Hirschi, M. J. Vetticatt and D. Seidel, Angew. Chem.,
Int. Ed., 2017, 56, 2670; (g) U. Nath and S. C. Pan, J. Org.
Chem., 2017, 82, 3262; (h) C. Trujillo, I. Rozas, A. Botte and
S. J. Connon, Chem. Commun., 2017, 53, 8874.
10 For a review of this type of reaction (racemic) see:
M. González-López and J. T. Shaw, Chem. Rev., 2009, 109,
164.
11 R. Claveau, B. Twamley and S. J. Connon, Chem. Commun.,
2018, 54, 3231.
Conflicts of interest
There are no conflicts to declare.
12 G. Jaeschke, K. Gottwald, K. Matsuda, R. Formisano,
D. A. Chaplin and D. Seebach, Tetrahedron, 1977, 53, 7539.
13 For related stoichiometric parallel kinetic resolutions see:
(a) I. Schiffers, C. L. Dinter, L. Defrère, A. Gerlach,
G. Raabe and C. Bolm, Synthesis, 2001, 1719; (b) Y. Uozumi,
Acknowledgements
This publication has emanated from research supported by
the Science Foundation Ireland (SFI – 12-IA-1645).
This journal is © The Royal Society of Chemistry 2018
Org. Biomol. Chem., 2018, 16, 7574–7578 | 7577