Journal of the American Chemical Society
Communication
congeners is reversible,18 and the successful migration of the
styrenyl and butadienyl groups in Scheme 1 is made possible
only by deprotonation of the final ring opened products,
displacing the equilibrium.
The synthesis of quaternary centers bearing heteroatoms is in
many cases challenging,10 and the ability to deliver alkenyl
substituents to such centers fills a useful gap in the synthetic
repertoire.
Miyatake-Ondozabal, H.; Clayden, J. Org. Lett. 2010, 12, 2222.
(c) Fournier, A. M.; Clayden, J. Org. Lett. 2012, 14, 142.
(7) MacLellan, P.; Clayden, J. Chem. Commun. 2011, 3395.
(8) For a study of the mechanism of the arylation, see: Grainger, D.
M.; Campbell Smith, A.; Vincent, M. A.; Hillier, I. H.; Wheatley, A. E.
H.; Clayden, J. Eur. J. Org. Chem. 2012, 731.
(9) For a survey of routes to vinyl ureas, see: Lefranc, J.; Tetlow, D.
J.; Donnard, M.; Minassi, A.; Gal
13, 296.
́
vez, E.; Clayden, J. Org. Lett. 2011,
(10) (a) Clayden, J.; Donnard, M.; Lefranc, J.; Tetlow, D. J. Chem.
Commun. 2011, 4624. (b) Clayden, J.; MacLellan, P. Beilstein J. Org.
Chem. 2011, 7, 582.
ASSOCIATED CONTENT
■
S
* Supporting Information
(11) (a) Sikorski, W. H.; Reich, H. J. Am. Chem. Soc. 2001, 123, 6527.
(b) Mukhopadhyay, T.; Seebach, D. Helv. Chim. Acta 1982, 65, 385.
(12) Dipole-stabilized benzylic organolithiums α to O or S are less
configurationally stable than those α to N. See ref 1, pp 169−213.
(13) The X-ray crystal structure of (S)-10b•HCl has been deposited
with the Cambridge Crystallographic Database, deposition number
861577. Related intramolecular arylations of ureas (ref 5a, 5e) and
thiocarbamates (ref 6) proceed with retention of configuration, while
arylations of carbamates (ref 5) proceed with inversion. In general,
benzyllithiums react stereospecifically, but with the sense of retention
or inversion being strongly dependent on conditions and the
electrophile. For a discussion, see: References 1, pp 241−258, and 4.
Also see: (a) Gawley, R. E. Tetrahedron Lett. 1999, 40, 4297.
(b) Gawley, R. E.; Low, E.; Zhang, Q.; Harris, R. J. Am. Chem. Soc.
2000, 122, 3344.
(14) α-O- and α-N-substituted organolithiums stabilized by
carbamates and α-S-substituted organolithiums stabilized by thio-
carbamates are well-established carbanion equivalents (ref 1). The
equivalent ureas have risen to prominence only recently: (a) Clayden,
J.; Dufour, J. Tetrahedron Lett. 2006, 47, 6945. (b) Clayden, J.; Turner,
H.; Pickworth, M.; Adler, T. Org. Lett. 2005, 7, 3147. (c) Clayden, J.;
Turner, H.; Helliwell, M.; Moir, E. J. Org. Chem. 2008, 73, 4415. For
an overview, see: (d) Volz, N.; Clayden, J. Angew. Chem., Int. Ed. 2011,
50, 12158.
1
Full experimental and characterization data, including H and
13C NMR spectra, for all new compounds. Computational and
React IR data. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the EPSRC. We thank
GlaxoSmithKline for a CASE award (to A.M.F.) and SASOL
for a postdoctoral fellowship (to S.H.). Tommaso Marcelli
acknowledges the MIUR (Rientro dei Cervelli 2008) and the
Politecnico di Milano for financial support. We are indebted to
CILEA for the generous allocation of computer time. J.C. is the
recipient of a Royal Society Wolfson Research Merit Award.
(15) (a) For a recent discussion of nucleophilic aromatic
substitution, see: Fernandez, I.; Frenking, G.; Uggerud, E. J. Org.
Chem. 2010, 75, 2971. (b) For instances of substitution of vinylic
leaving groups, see: Smith, M. B.; March, J. March’s Advanced Organic
Chemistry, 6th ed.; Wiley: NJ, 2007; pp 473−5. (c) Vinylic
substitution may be achieved by 1,2-metallate rearrangement; see:
Kocienski, P.; Barber, C. Pure Appl. Chem. 1990, 62, 1933.
(16) Full details of the in situ IR studies are provided in the
Supporting Information. For recent studies of organolithium reactions
using React-IR, see ref 3a and (a) Stead, D.; Carbone, G.; O’Brien, P.;
Campos, K. R.; Coldham, I.; Sanderson, A. J. Am. Chem. Soc. 2010,
132, 7260. (b) Pippel, D. J.; Weisenburger, G. A.; Faibish, N. C.; Beak,
P. J. Am. Chem. Soc. 2001, 123, 4919. (c) Rutherford, J. L.; Hoffmann,
D.; Collum, D. B. J. Am. Chem. Soc. 2002, 124, 264. (d) Sheikh, N. S.;
Leonori, D.; Barker, G.; Firth, J. D.; Campos, K. R.; Meijer, A. J. H. M.;
O’Brien, P.; Coldham, I. J. Am. Chem. Soc. 2012, 134, 5300. Several of
these studies have noted transient species with reduced carbonyl
stretching frequencies identified as ‘pre-lithiation complexes’ between
the alkyllithium base and the substrate.
REFERENCES
■
(1) Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon:
Oxford, 2002.
(2) For reviews, see: O’Brien, P.; Bilke, J. L. Angew. Chemie Int. Ed.
2008, 47, 2734. Organolithiums in Enantioselective Synthesis; Hodgson,
D. M., Ed.; Topics in Organometallic Chemistry; Springer: 2003; Vol.
5.
(3) For recent representative examples, see: (a) Barker, G.; McGrath,
J. L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K. R.; O’Brien, P. J.
Org. Chem. 2011, 76, 5936. (b) Falck, J. R.; Patel, P. K.;
Bandyopadhyay, A. J. Am. Chem. Soc. 2007, 129, 790. (c) Caprio, V.
Lett. Org. Chem. 2006, 3, 339. (d) Dieter, R. K.; Chen, N.; Watson, R.
T. Tetrahedron 2005, 61, 3221. (e) Dieter, R. K.; Watson, R. T.;
Goswami, R. Org. Lett. 2004, 6, 253. (f) Dieter, R. K.; Oba, G.;
Chandupatla, K. R.; Topping, C. M.; Lu, K.; Watson, R. T. J. Org.
Chem. 2004, 69, 3076. (g) Papillon, J. P. N; Taylor, R. J. K. Org. Lett.
2002, 4, 119. (h) Tomooka, K.; Shimizu, H.; Nakai, T. J. Organomet.
Chem. 2001, 624, 364.
(4) (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K.
Nature (London) 2008, 456, 778. (b) Scott, H. K.; Aggarwal, V. K.
Chem.Eur. J. 2011, 17, 13124. (c) Sonawane, R. P.; Jheengut, V.;
Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2011, 50, 3760.
(5) (a) Clayden, J.; Dufour, J.; Grainger, D.; Helliwell, M. J. Am.
Chem. Soc. 2007, 129, 7488. (b) Clayden, J.; Hennecke, U. Org. Lett.
2008, 10, 3567. (c) Bach, R.; Clayden, J.; Hennecke, U. Synlett 2009,
421. (d) Tetlow, D. J.; Hennecke, U.; Raftery, J.; Waring, M. J.; Clarke,
D. S.; Clayden, J. Org. Lett. 2010, 12, 5442. (e) Clayden, J.; Donnard,
M.; Lefranc, J.; Minassi, A.; Tetlow, D. J. J. Am. Chem. Soc. 2010, 132,
6624.
(17) Inclusion of a second molecule of alkyllithium in the
computational model was found to be required to balance the
negative charge building on the urea function upon opening of the
cyclic intermediate.
(18) Evidence for the reversibility of the ring-opening step was also
found when 7e was treated with NaH, leading to ring closure to an
imidazolidinone
(6) (a) Clayden, J.; Farnaby, W.; Grainger, D. M.; Hennecke, U.;
Mancinelli, M.; Tetlow, D. J.; Hillier, I. H.; Vincent, M. A. J. Am. Chem.
Soc. 2009, 131, 3410. (b) Fournier, A. M.; Brown, R. A.; Farnaby, W.;
7289
dx.doi.org/10.1021/ja301591m | J. Am. Chem. Soc. 2012, 134, 7286−7289