stereoisomeric mixtures. Recently, similar hydroarylation
reactions of alkynes using rhodium,4,5 iridium,6 palla-
dium,7 rhenium,8 nickel,9 and cobalt10 catalysts have
also been reported,11 but the substrate scope remains
limited. Consequently, development of new catalyst sys-
tems with high selectivity and wide applicability is strongly
desired. In the context of our study of ruthenium-catalyzed
CꢀH olefination,3aꢀc,12 we have succeeded in finding that
the regio- and stereoselective hydroarylation of various
alkynes with benzamides involving amide-directed CꢀH
bond cleavage can be realized by using a ruthenium/silver
catalyst system.13 The catalyst was also found to be
effective for the hydroarylation with phenylazoles. These
new findings are described herein.
In an initial attempt, the reaction of N,N-dimethylben-
zamide (1a) (0.25 mmol) with diphenylacetylene (2a)
(0.5 mmol) was conducted in the presence of [Ru(p-
cymene)Cl2]2 (0.0125 mmol, 5 mol %) and AgSbF6 (0.05
mmol) in dioxane at 100 °C for 5 h under N2. As a result,
the hydroarylation product 3a was obtained in 43% yield
(entry 1 in Table 1). The product yield was remarkably
improved to 96% by addition of AcOH (1 mmol) (entry 2).
Decreasing the amount of AcOH to 0.1 mmol reduced the
yield (entry 3). Under conditions using H2O or KOAc in
place of AcOH, 3a could not be obtained at all (entries 4
and 5). Even with a slight excess (0.3 mmol) of 2a, 3a was
formed in 82% yield (entry 6).
(4) For early examples for catalytic hydroarylation, see: (a) Hong, P.;
Cho, B. R.; Yamazaki, H. Chem. Lett. 1979, 339. (b) Hong, P.; Cho,
B. R.; Yamazaki, H. Chem. Lett. 1980, 507. (c) Hong, P.; Yamazaki, H.
J. Mol. Catal. 1983, 21, 133.
(5) (a) Schipper, D. J.; Hutchinson, M.; Fagnou, K. J. Am. Chem.
Soc. 2010, 132, 6910. (b) Shibata, Y.; Otake, Y.; Hirano, M.; Tanaka, K.
Org. Lett. 2009, 11, 689. (c) Katagiri, T.; Mukai, T.; Satoh, T.; Hirano,
K.; Miura, M. Chem. Lett. 2009, 38, 118. (d) Parthasarathy, K.;
Jeganmohan, M.; Cheng, C. H. Org. Lett. 2008, 10, 325. (e) Colby,
D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 3645.
(f) Lim, S. G.; Lee, J. H.; Moon, C. W.; Hong, J. B.; Jun, C. H. Org. Lett.
2003, 5, 2759. (g) Lim, Y. G.; Lee, K. H.; Koo, B. T.; Kang, J. B.
Table 1. Reaction of N,N-Dimethylbenzamide (1a) with Di-
phenylacetylene (2a)a
€
Tetrahedron Lett. 2001, 42, 7609. (h) Durr, U.; Kisch, H. Synlett 1997,
1335. (i) Aulwurm, U. R.; Melchinger, J. U.; Kisch, H. Organometallics
1995, 14, 3385.
(6) (a) Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y. K.; Endo, K.;
Shibata, T. J. Organomet. Chem. 2008, 693, 3939. (b) Satoh, T.;
Nishinaka, Y.; Miura, M.; Nomura, M. Chem. Lett. 1999, 615.
(7) (a) Tsukada, N.; Murata, K.; Inoue, Y. Tetrahedron Lett. 2005,
46, 7515. (b) Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue, Y.
J. Am. Chem. Soc. 2003, 125, 12102.
(8) (a) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K.
J. Am. Chem. Soc. 2006, 128, 202. (b) Kuninobu, Y.; Kawata, A.; Takai,
K. J. Am. Chem. Soc. 2005, 127, 13498.
(9) (a) Kanyiva, K. S.; Kashihara, N.; Nakao, Y.; Hiyama, T.;
Ohashi, M.; Ogoshi, S. Dalton Trans. 2010, 39, 10483. (b) Nakao, Y.;
Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 15996.
(c) Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
6410. (d) Nakao, Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. J. Am.
Chem. Soc. 2008, 130, 16170. (e) Nakao, Y.; Kanyiva, K. S.; Hiyama, T.
J. Am. Chem. Soc. 2008, 130, 2448. (f) Nakao, Y.; Kanyiva, K. S.; Oda,
S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 8146. See also a review: (g)
Nakao, Y. Chem. Rec. 2010, 11, 242.
additive
(mmol)
yield of
entry
3a (%)b
1
2
3
4
5
6c
ꢀ
43
AcOH (1)
AcOH (0.1)
H2O (1)
96 (81)
55
0
KOAc (1)
AcOH (1)
0
82
a Reaction conditions: [1a]/[2a]/[{Ru(p-cymene)Cl2}2]/[AgSbF6] =
0.25:0.5:0.0125:0.05 (in mmol), in dioxane (3 mL) at 100 °C for 5 h under
N2. b GC yield based on the amount of 1a used. Value in parentheses
indicates yield after purification. c [2a] = 0.3 mmol.
(10) (a) Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2011,
133, 17283. (b) Ding, Z.; Yoshikai, N. Synthesis 2011, 2561. (c) Yoshikai,
N. Synlett 2011, 1047. (d) Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N.
J. Am. Chem. Soc. 2010, 132, 12249.
(11) Reviews: (a) Kitamura, T. Eur. J. Org. Chem. 2009, 1111. (b)
Vasil’ev, A. V. Russ. J. Org. Chem. 2009, 45, 1. (c) Jia, C.; Kitamura, T.;
Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633.
Next, the hydroarylation of various alkynes with amides
was examined under similar reaction conditions in the
presence of AcOH. Unsymmetrical alkylphenylacetylenes,
1-phenylpropyne (2b) and -hexyne (2c), reacted with 1a to
smoothly produce 3band 3c, respectively (entries 1 and 2 in
Table 2). It should be noted that no regio- and stereo-
isomers could be detected at all. Bis(4-chlorophenyl)-
acetylene (2d) coupled with 1a to form 3d (entry 3). The
reaction of 1-phenyl-2-(trimethylsilyl)acetylene (2e) pro-
ceeded efficiently through hydroarylation and subsequent
desilylation to produce a 1,1-diarylethene derivative 3e in
63% yield, along with a minor amount of normal product
3e0 (entry 4). From a terminal alkyne, tris(isopropyl)-
silylacetylene (2f), the corresponding hydroarylation
product 3f was obtained, albeit with a low yield (entry 5).
A series of N,N-disubstituted benzamides having a
cyclic- or diphenylamino group, 1bꢀd, reacted with 2a
to form products 3gꢀi, respectively, in 47ꢀ79% yields
(entries 6ꢀ8).
(12) (a) Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh,
T.; Miura, M. Org. Lett. 2011, 13, 706. After our report, related
Ru-catalyzed oxidative coupling reactions were also disclosed: (b) Li,
B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14, 736.
(c) Ackermann, L.; Wang, L.; Lygin, A. V. Chem. Sci 2012, 3, 177. (d) Li,
B.; Feng, H.; Xu, S.; Wang, B. Chem.;Eur. J. 2011, 17, 12573. (e)
Ackermann, L.; Fenner, S. Org. Lett. 2011, 13, 6548. (f) Ackermann, L.;
Pospech, J. Org. Lett. 2011, 13, 4153. (g) Ackermann, L.; Lygin, A. V.;
Hofmann, N. Org. Lett. 2011, 13, 3278. (h) Arockiam, P. B.; Fischmeister,
C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2011, 13, 3075. (i) Hashimoto,
Y.; Ueyama, T.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Chem.
Lett. 2011, 40, 1165.
(13) For reactions using Ru/Ag or related cationic Ru catalysts, see:
(a) Hashimoto, Y.; Ortloff, T.; Hirano, K.; Satoh, T.; Bolm, C.; Miura,
M. Chem. Lett. 2012, 41, 118. (b) Chinnagolla, R. K.; Jeganmohan, M.
Eur. J. Org. Chem. 2012, 417. (c) Ackermann, L.; Pospech, J.; Graczyk,
K.; Rauch, K. Org. Lett. 2012, 14, 930. (d) Ackermann, L.; Lygin, A. V.
Org. Lett. 2012, 14, 764. (e) Ackermann, L.; Wang, L.; Wolfram, R.
Lygin, A. V. Org. Lett. 2012, 14, 728. (f) Chinnagolla, R. K.; Jeganmohan,
M. Chem. Commun. 2012, 48, 2030. (g) Kwon, K.-H.; Lee, D. W.; Yi, C. S.
Organometallics 2012, 31, 495. (h) Padala, K.; Jeganmohan, M. Org. Lett.
2011, 13, 6144. (i) Kwon, K.-H.; Lee, D. W.; Yi, C. S. Organometallics
2010, 29, 5748. (j) Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett.
2004, 6, 581.
A plausible mechanism for the reaction of 1 with 2 is
illustrated in Scheme 1. First, ortho-metalation of 1 takes
Org. Lett., Vol. 14, No. 8, 2012
2059