We acknowledge financial support by NSFC (21102002,
21072001 and 20932006), Anhui Province Natural Science
Foundation (090416231), Natural Science Foundation of
Education Department of Anhui Province (KJ2010A028), and
211 Project of Anhui University for supporting the research.
Notes and references
1 (a) J. M. Berg and Y. Shi, Science, 1996, 271, 1081; (b) A. C.
Burdette and S. J. Lippard, Proc. Natl. Acad. Sci. U. S. A., 2003,
100, 3605; (c) G. K. Walkup, S. C. Burdette, S. J. Lippard and
R. Y. Tsien, J. Am. Chem. Soc., 2000, 122, 56; (d) E. Kimura,
S. Aoki, E. Kikutae and T. Koike, Proc. Natl. Acad. Sci. U. S. A.,
2003, 100, 3731; (e) Y. M. Li, J. Shi, X. Wu, Z. F. Luo, F. L. Wang
and Q. X. Guo, Cell Biochem. Funct., 2009, 27, 417.
2 Z. C. Xu, J. Y. Yoon and D. R. Spring, Chem. Soc. Rev., 2010, 39, 1996.
3 (a) E. L. Que, D. W. Domaile and C. J. Chang, Chem. Rev., 2008,
108, 1517; (b) E. Tomat and S. J. Lippard, Curr. Opin. Chem. Biol.,
2010, 14, 225; (c) R. McRae, P. Bagchi, S. Sumalekshmy and
C. J. Fahrni, Chem. Rev., 2009, 109, 4780; (d) X. M. Meng, M. Z.
Zhu, L. Liu and Q. X. Guo, Tetrahedron Lett., 2006, 47, 1559;
(e) X. Zhou, B. Yu, Y. L. Guo, X. L. Tang, H. H. Zhang and
W. S. Liu, Inorg. Chem., 2010, 49, 4002.
4 (a) W. Denk, J. H. Strickler and W. W. Webb, Science, 1990,
248, 73; (b) W. R. Zipfel, R. M. Williams and W. W. Webb,
Nat. Biotechnol., 2003, 21, 1369; (c) F. Helmchen and W. Denk,
Nat. Methods, 2005, 2, 932; (d) H. M. Kim and B. R. Cho, Acc.
Chem. Res., 2009, 42, 863; (e) Y. M. Li, H. B. Chong, X. M. Meng,
S. X. Wang, M. Z. Zhu and Q. X. Guo, Dalton Trans., submitted.
5 (a) G. Masanta, C. S. Lim, H. J. Kim, J. H. Han, H. M. Kim and
B. R. Cho, J. Am. Chem. Soc., 2011, 133, 5698; (b) C. Huang,
J. Qu, J. Qi, M. Yan and G. Xu, Org. Lett., 2011, 13, 1462;
(c) X. Y. Chen, J. Shi, Y. M. Li, F. L. Wang, X. Wu, Q. X. Guo
and L. Liu, Org. Lett., 2009, 11, 4426.
6 (a) S. Sumalekshmy, M. M. Henary, N. Siegel, P. V. Lawson,
Y. Wu, K. Schmidt, J. L. Bredas, J. W. Perry and C. J. Fahrni,
J. Am. Chem. Soc., 2007, 129, 11888; (b) L. Xue, C. Liu and
H. Jiang, Chem. Commun., 2009, 1061.
7 (a) M. Taki, J. L. Wolford and T. V. O’Halloran, J. Am. Chem.
Soc., 2004, 126, 712–713; (b) C. J. Chang, E. M. Nolan, J. Jaworski,
K. I. Okamoto, M. Sheng and S. J. Lippard, Inorg. Chem., 2004,
43, 6774; (c) Y. Zhang, X. Guo, W. Si, L. Jia and X. H. Qian, Org.
Lett., 2008, 10, 473; (d) H. M. Kim and B. R. Cho, Chem. Commun.,
2009, 153.
Fig. 4 (a) Two-photon image of HeLa cells incubated with 15 mM
6-MPVQ after 30 min of incubation, washed with PBS buffer. lex
=
800 nm (emission wavelength from 390 to 465 nm). (b) Emission
wavelength from 500 to 550 nm. (c) Bright-field image of HeLa cells.
(d) The overlay of (a), (b) and (c). (e) Two-photon image following a
30 min treatment with Zn2+/pyrithione (30 mM, 1 : 1 ratio). Emission
wavelength from 390 to 465 nm. (f) Emission wavelength from 500
to 550 nm. (g) Bright-field image of HeLa cells. (h) The overlay of (e),
(f) and (g).
to imaging and/or Zn2+ addition. TPM images are then obtained
by exciting the probes with a mode-locked titanium–sapphire
laser source set at wavelength 800 nm. According to the
fluorescent properties of the probes, the optical windows at
390–465 and 500–530 nm are chosen for confocal imaging of
6-MPVQ. As shown in Fig. 4, before addition of Zn2+ the
optical window at 390–465 nm shows moderate fluorescence,
whereas the optical window at 500–530 nm exhibits weak
fluorescence. This experiment indicates that the new probes
are cell permeable. After Zn2+ is added to the cells, the
fluorescence intensity of the optical window at 500–530 nm
increases dramatically, whereas that at 390–465 nm significantly
decreases. Similar behaviors are also observed with 6-MPQ
under TPM excitation (ESIw). Thus the ratiometric fluorescence
images generated from the above optical windows demonstrate
that the new probes can reveal the variation of the intracellular
zinc flux in vivo system under two-photon excitation.13 Moreover,
the 5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide
(MTT) assay demonstrates that the probes show essentially
no cytotoxicity after a long period of incubation.
8 K. D. Belfield, M. V. Bondar, A. Frazer, A. R. Morales, O. D.
Kachkovsky, I. A. Mikhailov, A. E. Masunov and O. V. Przhonska,
J. Phys. Chem. B, 2010, 114, 9313–9321.
9 (a) X. J. Peng, Y. Q. Yu, S. G. Sun, Y. K. Wu and J. L. Fan,
Org. Biomol. Chem., 2007, 5, 226; (b) L. Xue, C. Liu and H. Jiang,
Org. Lett., 2009, 11, 1655; (c) F. Qian, C. L. Zhang, Y. M. Zhang,
W. J. He, X. Gao, P. Hu and Z. J. Guo, J. Am. Chem. Soc., 2009,
131, 1460.
10 (a) A. Bhaskar, G. Ramakrishna, R. J. Twieg and T. Goodson III.,
J. Phys. Chem. C, 2007, 111, 14607; (b) A. Ajayaghosh, P. Carol
and S. Sreejith, J. Am. Chem. Soc., 2005, 127, 14962; (c) N. C. Lim
In summary, we have developed two 6-substituted quinoline-
based ratiometric two-photon zinc probes (6-MPVQ and 6-MPQ)
and investigated their applications in vitro and in vivo. Among
the two probes, 6-MPVQ shows a large red shift upon Zn2+
binding with 14-fold emission enhancement and a significant
increase of the two-photon cross section. Moreover, 6-MPVQ
exhibits high ion selectivity and sensitivity for Zn2+ in a
neutral aqueous solution. The in vivo two-photon microscopy
imaging experiments show that the new probes are cell permeable
and can be used for imaging Zn2+ in living cells in a ratiometric
fashion. The good two-photon properties of the 6-substituted
quinolines also hint the potential of their applications to the
design of probes for other metal ions.
and C. Bruckner, Chem. Commun., 2004, 1094.
¨
11 (a) L. Xue, Z. J. Fang, G. P. Li, H. H. Wang and H. Jiang, Sens.
Actuators, B, 2011, 156, 410; (b) M. Drobizhev, F. Meng,
A. Rebane, Y. Stepanenko, E. Nickel and C. W. Spangler,
J. Phys. Chem. B, 2006, 110, 9802.
12 (a) K. Kikuchi, K. Komatsu and T. Nagano, Curr. Opin. Chem.
Biol., 2004, 8, 182; (b) E. M. Nolan, J. Jaworski, K. I. Okamoto,
Y. Hayashi, M. Sheng and S. J. Lippard, J. Am. Chem. Soc., 2005,
127, 16812; (c) K. Hanaoka, K. Kikuchi, H. Kojima, Y. Urano and
T. Nagano, J. Am. Chem. Soc., 2004, 126, 12470; (d) C. E. Felton,
L. P. Harding, J. E. Jones, B. M. Kariuki, S. J. A. Pope and
C. R. Rice, Chem. Commun., 2008, 6185.
13 M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson,
Angew. Chem., Int. Ed., 2009, 48, 3244.
c
4198 Chem. Commun., 2012, 48, 4196–4198
This journal is The Royal Society of Chemistry 2012