10.1002/anie.202002936
Angewandte Chemie International Edition
COMMUNICATION
The observed regioselectivity of the S-vinylation is intriguing, as
the C-vinylation of nitrocyclohexane with VBX 2a gave a terminal
alkene as the main product (see Scheme 1b).[7] Furthermore, the
high E-stereoselectivity is opposite to reactions with
vinyliodonium salts and shows that VBX does not react through
a vinylic SN2 mechanism.[3a] While preliminary radical trap
experiments were inconclusive,[21] isomerization of 3e was
observed upon purification on column chromatography (from E:Z
>20:1 to 16:1), and we hence propose that the main reaction
pathway gives the E-product, while the Z-product is formed by
isomerization. We are currently investigating the mechanisms of
VBX vinylations with various nucleophiles by DFT calculations
and 13C-labelling studies to detect any carbene pathways, and
will report the results in due time.
The authors declare no conflict of interest.
Keywords: alkenyl sulfides • benziodoxolones • hypervalent
compounds • synthetic methods • VBX
[1] a) V. V. Zhdankin, Hypervalent Iodine Chemistry, Wiley, Chichester, UK,
2014; b) T. Wirth, in Top. Curr. Chem., Vol. 373, Springer International
Publishing, Cham, 2016; c) B. Olofsson, I. Marek, Z. Rappoport, in
Patai's Chemistry of Functional Groups, Wiley, 2019, p. 1032.
[2]
a) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052-
9070; b) M. S. Yusubov, A. V. Maskaev, V. V. Zhdankin, Arkivoc 2011,
1, 370-409; c) J. P. Brand, J. Waser, Chem. Soc. Rev. 2012, 41, 4165-
4179.
[3]
Selected examples of metal-free vinylations: a) M. Ochiai, S. Yamamoto,
T. Suefuji, D.-W. Chen, Org. Lett. 2001, 3, 2753-2756; b) S. Hara, T.
Guan, M. Yoshida, Org. Lett. 2006, 8, 2639-2641; c) A. A. Rajkiewicz,
M. Kalek, Org. Lett. 2018, 20, 1906-1909; d) K. Kepski, C. R. Rice, W. J.
Moran, Org. Lett. 2019, 21, 6936-6939; Selected examples of metal-
catalyzed vinylations: e) E. Skucas, D. W. C. MacMillan, J. Am. Chem.
Soc. 2012, 134, 9090-9093; f) M. G. Suero, E. D. Bayle, B. S. L. Collins,
M. J. Gaunt, J. Am. Chem. Soc. 2013, 135, 5332-5335; g) H. Yuan, L.
Guo, F. Liu, Z. Miao, L. Feng, H. Gao, ACS Catal. 2019, 9, 3906-3912;
h) J. Sheng, Y. Wang, X. Su, R. He, C. Chen, Angew. Chem. Int. Ed.
2017, 56, 4824-4828.
To conclude, we have reported a high-yielding method for
vinylation of aromatic and aliphatic thiols with the recently
discovered hypervalent iodine(III) reagents VBX. This transition
metal-free methodology uses equimolar amounts of reagents
and proceeds under mild conditions with complete chemo- and
regioselectivity, as well as high stereoselectivity. Mercapto-
heterocycles could be vinylated under modified conditions.
Moreover, the synthesis and reactivity of several novel,
substituted VBX reagents was described to illustrate the
influences of steric and electronic factors on the vinylation. The
Me2-VBX backbone proved superior to the parent VBX, a
discovery that could have impact on reactions with other
benziodoxolone reagents too, such as alkynylations and
trifluoromethylations. Results from our ongoing mechanistic
studies of metal-free vinylations with VBX and various
nucleophiles will be reported in due time.
[4]
[5]
a) M. Ochiai, J. Organomet. Chem. 2000, 611, 494-508; b) T. Okuyama,
Acc. Chem. Res. 2002, 35, 12-18; c) M. Fujita, W. H. Kim, Y. Sakanishi,
K. Fujiwara, S. Hirayama, T. Okuyama, Y. Ohki, K. Tatsumi, Y.
Yoshioka, J. Am. Chem. Soc. 2004, 126, 7548-7558; d) T. Okuyama, M.
Fujita, Acc. Chem. Res. 2005, 38, 679-686.
a) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015, 115, 650-682; b)
Y. Li, D. P. Hari, M. V. Vita, J. Waser, Angew. Chem. Int. Ed. 2016, 55,
4436-4454; c) D. P. Hari, P. Caramenti, J. Waser, Acc. Chem. Res. 2018,
51, 3212-3225.
[6]
[7]
T. Kitamura, T. Fukuoka, Y. Fujiwara, Synlett 1996, 659-660.
E. Stridfeldt, A. Seemann, M. J. Bouma, C. Dey, A. Ertan, B. Olofsson,
Chem. Eur. J. 2016, 22, 16066-16070.
[8]
[9]
M. Ochiai, T. Shu, T. Nagaoka, Y. Kitagawa, J. Org. Chem. 1997, 62,
2130-2138.
a) J. Wu, X. Deng, H. Hirao, N. Yoshikai, J. Am. Chem. Soc. 2016, 138,
9105-9108; b) J. Wu, K. Xu, H. Hirao, N. Yoshikai, Chem. Eur. J. 2017,
23, 1521-1525.
Experimental Section
[10] a) B. Wu, J. Wu, N. Yoshikai, Chem. Asian J. 2017, 12, 3123-3127; b) D.
Shimbo, A. Shibata, M. Yudasaka, T. Maruyama, N. Tada, B. Uno, A.
Itoh, Org. Lett. 2019, 21, 9769-9773; c) J. Wu, X. Deng, N. Yoshikai,
Chem. Eur. J. 2019, 25, 7839-7842; d) P. Caramenti, N. Declas, R.
Tessier, M. D. Wodrich, J. Waser, Chem. Sci. 2019, 10, 3223-3230; e) R.
Tessier, J. Ceballos, N. Guidotti, R. Simonet-Davin, B. Fierz, J. Waser,
Chem 2019, 5, 2243-2263; f) G. Pisella, A. Gagnebin, J. Waser,
ChemRxiv, DOI:10.26434/chemrxiv.7892513.v1.
[11] a) P. Caramenti, N. Declas, R. Tessier, M. D. Wodrich, J. Waser, Chem.
Sci. 2019, 10, 3223-3230; b) A. Boelke, L. D. Caspers, B. J. Nachtsheim,
Org. Lett. 2017, 19, 5344-5347; c) B. Liu, C.-H. Lim, G. M. Miyake, J.
Am. Chem. Soc. 2018, 140, 12829-12835; d) J. Davies, N. S. Sheikh, D.
Leonori, Angew. Chem. Int. Ed. 2017, 56, 13361-13365; e) S. G. E. Amos,
S. Nicolai, A. Gagnebin, F. Le Vaillant, J. Waser, J. Org. Chem. 2019, 84,
3687-3701; f) B. Liu, J. Alegre-Requena, R. Paton, G. Miyake, Chem.
Eur. J. 2020, 26, 2386-2394.
General Procedure for Vinylation of Thiols
Thiol 1 (1.0 equiv, 0.3 mmol) was placed in an oven-dried
microwave vial with magnetic stirring bar under argon, followed
by the addition of anhydrous and degassed THF (2.0 mL).
Subsequently, VBX 2 (1.1 equiv) and tBuOK (1.0 equiv) were
sequentially added and the vial was rinsed with THF (1.0 mL).
The mixture rapidly turns yellow and it was stirred at RT for 2 h.
The reaction was quenched with water (2.0 mL) and the
aqueous phase was extracted with CH2Cl2 (2 x 10 mL) and the
combined organic phases were dried over Na2SO4, filtered and
concentrated under reduce pressure. The crude reaction was
purified via column chromatography to provide product 3.
[12] H. Mizuno, K. Domon, K. Masuya, K. Tanino, I. Kuwajima, J. Org.
Chem. 1999, 64, 2648-2656.
[13] a) P. Johannesson, G. Lindeberg, A. Johansson, G. V. Nikiforovich, A.
Gogoll, B. Synnergren, M. Le Grèves, F. Nyberg, A. Karlén, A. Hallberg,
J. Med. Chem. 2002, 45, 1767-1777; b) H. S. Sader, D. M. Johnson, R. N.
Jones, Antimicrob. Agents Chemother. 2004, 48, 53-62.
[14] B. M. Trost, A. C. Lavoie, J. Am. Chem. Soc. 1983, 105, 5075-5090.
[15] H. Hagiwara, K. Nakayama, H. Uda, Bull. Chem. Soc. Jpn. 1975, 48,
3769-3770.
[16] a) A. Ogawa, T. Ikeda, K. Kimura, T. Hirao, J. Am. Chem. Soc. 1999, 121,
5108-5114; b) C. Cao, L. R. Fraser, J. A. Love, J. Am. Chem. Soc. 2005,
127, 17614-17615; c) L. Palacios, Y. Meheut, M. Galiana-Cameo, M. J.
Artigas, A. Di Giuseppe, F. J. Lahoz, V. Polo, R. Castarlenas, J. J. Pérez-
Torrente, L. A. Oro, Organometallics 2017, 36, 2198-2207.
[17] a) C. G. Bates, P. Saejueng, M. Q. Doherty, D. Venkataraman, Org. Lett.
2004, 6, 5005-5008; b) S. Ranjit, Z. Duan, P. Zhang, X. Liu, Org. Lett.
2010, 12, 4134-4136; c) H.-L. Kao, C.-F. Lee, Org. Lett. 2011, 13, 5204-
5207.
Acknowledgements
Per-Ola Norrby is kindly acknowledged for mechanistic
discussions. Carl Trygger Foundation (CTS 17:341) and the
Swedish Research Council (2015-04404) are acknowledged for
financial support.
Conflict of interest
This article is protected by copyright. All rights reserved.