Table 4 Pd-catalysed decarbonylation of alkanes and alkenylaldehydesa
Notes and references
1 J. F. Hartwig, Organotransition Metal Chemistry, from Bonding
to Catalysis, University Science Books, New York, 2010.
2 J. Tsuji, in Organopalladium Chemistry for Organic Synthesis,
ed. E.-I. Negishi, Wiley, NY, 2002, vol. 2, ch. VI.5.1, pp. 2648–2653.
3 M. A. Garralda, Dalton Trans., 2009, 3635–3645.
4 K. Sen and J. C. Hackett, J. Am. Chem. Soc., 2010, 132, 10293–10305.
5 T. Patra, S. Manna and D. Maiti, Angew. Chem., Int. Ed., 2011, 50,
12140–12142.
6 E. Taarning and R. Madsen, Chem.–Eur. J., 2008, 14, 5638–5644.
7 M. C. Brohmer, N. Volz and S. Brase, Synlett, 2009, 1383–1386.
8 T. Shibata, N. Toshida and K. Takagi, Org. Lett., 2002, 4,
1619–1621.
9 T. Morimoto, K. Fuji, K. Tsutsumi and K. Kakiuchi, J. Am.
Chem. Soc., 2002, 124, 3806–3807.
10 A. Schirmer, M. A. Rude, X. Z. Li, E. Popova and S. B. del Cardayre,
Science, 2010, 329, 559–562.
11 N. Li, H. Norgaard, D. M. Warui, S. J. Booker, C. Krebs and
J. M. Bollinger, J. Am. Chem. Soc., 2011, 133, 6158–6161.
12 G. Domazetis, B. Tarpey, D. Dolphin and B. R. James, J. Chem.
Soc., Chem. Commun., 1980, 939–940.
13 T. Iwai, T. Fujihara and Y. Tsuji, Chem. Commun., 2008, 6215–6217.
14 M. Kreis, A. Palmelund, L. Bunch and R. Madsen, Adv. Synth.
Catal., 2006, 348, 2148–2154.
a
Aldehyde (0.5 mmol), cyclohexane (1.3 mL), MS (150 mg), and
b
c
Pd(OAc)2 (8 mol%), 140 1C. GC yield. 16 mol% Pd, 140 1C.
d
12 mol% Pd, 120 1C.
15 P. Fristrup, M. Kreis, A. Palmelund, P. O. Norrby and R. Madsen,
J. Am. Chem. Soc., 2008, 130, 5206–5215.
16 C. M. Beck, S. E. Rathmill, Y. J. Park, J. Y. Chen, R. H. Crabtree,
L. M. Liable-Sands and A. L. Rheingold, Organometallics, 1999,
18, 5311–5317.
17 D. H. Doughty and L. H. Pignolet, J. Am. Chem. Soc., 1978, 100,
7083–7085.
18 J. Tsuji and K. Ohno, Tetrahedron Lett., 1965, 3969–3971.
19 J. Tsuji and T. Ohno, Synthesis, 1969, 157–169.
20 J. O. Hawthorne and M. H. Wilt, J. Org. Chem., 1960, 25, 2215.
21 S. Matsubara, Y. Yokota and K. Oshima, Org. Lett., 2004, 6,
2071–2073.
22 J. W. Wilt and W. W. Pawlikowski, J. Org. Chem., 1975, 40,
3641–3644.
23 J. Tsuji and K. Ohno, J. Am. Chem. Soc, 1968, 90, 94–98.
24 J. Tsuji, K. Ohno and T. Kajimoto, Tetrahedron Lett., 1965, 50,
4565–4568.
Scheme 2 Decarbonylation of phenylglyoxal hydrate.
With the tremendous challenge of minimization of b-H
eliminated and homo-coupled side products38 finally we have
concentrated on simple alkanes and alkenylaldehydes
(Table 4). Moderate to high yields of the decarbonylated
products are obtained with alkenylaldehydes (entries 4a–4f).
It is observed that b-disubstitution leads to higher yield with
the least homo coupled side product (entries 4d–4f), whereas
a-substitution leads to a lesser conversion (entry 4c). The
decarbonylated product of an alkenyl aldehyde can therefore
be used in further olefin metathesis to get a higher number of
carbon containing hydrocarbons.40 In the case of trans-a-
methylcinnamaldehyde (entry 4c), the formation of 1 : 1 cis-
and trans-product reveals cis–trans isomerization at elevated
reaction temperature. Interestingly, no trace of the b-H
eliminated side product is observed for simple alkyl aldehydes
(entries 4g–4i). It should be noted that previous reactions were
unsuccessful in decarbonylating cinnamaldehyde (entry 4a)
and octanal.26
25 D. Ferri, C. Mondelli, F. Krumeich and A. Baiker, J. Phys. Chem. B,
2006, 110, 22982–22986.
26 Konopka, Jessica, Green Decarbonylation of Aldehydes using
Palladium(II) Acetate, 2011. Pell Scholars and Senior Theses.
27 J. M. Oconnor and J. Ma, J. Org. Chem., 1992, 57, 5075–5077.
28 B. J. Morgan, C. A. Mulrooney and M. C. Kozlowski, J. Org. Chem.,
2010, 75, 44–56.
29 K. G. Liu, A. Chougnet and W. D. Woggon, Angew. Chem., Int. Ed.,
2008, 47, 5827–5829.
30 A. Padwa and H. Zhang, J. Org. Chem., 2007, 72, 2570–2582.
31 S. Ikeda, M. Shibuya and Y. Iwabuchi, Chem. Commun., 2007,
504–506.
32 F. A. Khan and B. Rout, Tetrahedron Lett., 2006, 47, 5251–5253.
33 J. P. Malerich, T. J. Maimone, G. I. Elliott and D. Trauner, J. Am.
Chem. Soc., 2005, 127, 6276–6283.
34 M. Harmata and S. Wacharasindhu, Org. Lett., 2005, 7, 2563–2565.
35 G. S. Weatherhead, G. A. Cortez, R. R. Schrock and A. H. Hoveyda,
Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5805–5809.
36 See ESIw for detailed description.
37 Although a trace of homo-coupled product (o2%) is obtained in
entry 1b, only decarbonylated products are obtained in other cases.
38 Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and
F. Diederich, Wiley-VCH, Weinheim, Germany, 2nd edn, 2004.
39 J. March, Advanced Organic Chemistry, John Wiley & Sons,
New York, 1985.
Exploring phenylglyoxal hydrate as substrate (Scheme 2), we
find that with increasing catalyst loading, aldehydes containing
a-carbonyl center lead to decarbonylated product(s) in a chain
fashion to provide benzaldehyde and benzene.
In summary, we have developed an efficient decarbonylation
reaction by using Pd(OAc)2 as the precatalyst.41 A number of
substrates are successfully decarbonylated, without using any
exogenous ligand for palladium as well as CO-scavenger.
This activity is supported by DST (R/S1/IC–24/2011) and
BRNS (2011/20/37C/13/BRNS), India.
40 N. Fontan, M. Dominguez, R. Alvarez and A. R. de Lera, Eur. J.
Org. Chem., 2011, 6704–6712.
41 A provisional patent on this work has been filed, application no.
3280/MUM/2011.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4253–4255 4255