ACS Medicinal Chemistry Letters
Letter
(7) Schiller, P. W.; Nguyen, T. M. D.; Berezowska, I.; Dupuis, S.;
Weltrowska, G.; Chung, N. N.; Lemieux, C. Synthesis and in Vitro
Opioid Activity Profiles of DALDA Analogues. Eur. J. Med. Chem.
2000, 35, 895−901.
(8) Cai, J.; Song, B.; Cai, Y.; Ma, Y.; Lam, A. L.; Magiera, J.; Sekar, S.;
Wyse, B. D.; Ambo, A.; Sasaki, Y.; Lazarus, L. H.; Smith, M. T.; Li, T.
Endomorphin Analogues with Mixed μ -Opioid (MOP) Receptor
Agonism/δ-Opioid (DOP) Receptor Antagonism and Lacking B-
arrestin2 Recruitment Activity. Bioorg. Med. Chem. 2014, 22, 2208−
2219.
(9) Mosberg, H. I.; Yeomans, L.; Harland, A. A.; Bender, A. M.;
Sobczyk-Kojiro, K.; Anand, J. P.; Clark, M. J.; Jutkiewicz, E. M.;
Traynor, J. R. Opioid Peptidomimetics: Leads for the Design of
Bioavailable Mixed Efficacy μ Opioid Receptor (MOR) Agonist/δ
Opioid Receptor (DOR) Antagonist Ligands. J. Med. Chem. 2013, 56,
2139−2149.
(10) Schiller, P. W.; Fundytus, M. E.; Merovitz, L.; Weltrowska, G.;
Nguyen, T. M.; Lemieux, C.; Chung, N. N.; Coderre, T. J. The Opioid
μ Agonist/δ Antagonist DIPP-NH2[ψ] Produces a Potent Analgesic
Effect, No Physical Dependence, and Less Tolerance than Morphine
in Rats. J. Med. Chem. 1999, 42, 3520−3526.
(11) Schiller, P. W.; Nguyen, T. M.; Weltrowska, G.; Wilkes, B. C.;
Marsden, B. J.; Lemieux, C.; Chung, N. N. Differential Stereochemical
Requirements of μ vs. δ Opioid Receptors for Ligand Binding and
Signal Transduction: Development of a Class of Potent and Highly δ-
Selective Peptide Antagonists. Proc. Natl. Acad. Sci. U. S. A. 1992, 89,
11871−11875.
(12) Breslin, H. J.; Cai, C.; Miskowski, T. A.; Coutinho, S. V.; Zhang,
S. P.; Hornby, P.; He, W. Identification of Potent Phenyl Imidazoles as
Opioid Receptor Agonists. Bioorg. Med. Chem. Lett. 2006, 16, 2505−
2508.
Potent μ-Opioid Receptor Ligands Using Unique Tyrosine Analogues
of Endomorphin-2. J. Med. Chem. 2005, 48, 586−592.
(24) Bai, L.; Li, Z.; Chen, J.; Chung, N. N.; Wilkes, B. C.; Li, T.;
Schiller, P. W. [Dmt1]DALDA Analogues with Enhanced μ Opioid
Agonist Potency and with a Mixed μ /κ Opioid Activity Profile. Bioorg.
Med. Chem. 2014, 22, 2333−2338.
(25) Li, T.; Shiotani, K.; Miyazaki, A.; Tsuda, Y.; Ambo, A.; Sasaki,
Y.; Jinsmaa, Y.; Marczak, E.; Bryant, S. D.; Lazarus, L. H.; Okada, Y.
Bifunctional [2′,6′-Dimethyl-L-tyrosine1]endomorphin-2 Analogues
Substituted at Position 3 with Alkylated Phenylalanine Derivatives
Yield Potent Mixed μ-Agonist/δ-Antagonist and Dual μ-Agonist/δ-
Agonist Opioid Ligands. J. Med. Chem. 2007, 50, 2753−2766.
(26) Mosberg, H. I.; Ho, J. C.; Sobczyk-Kojiro, K. A High Affinity,
Mu-Opioid Receptor-Selective Enkephalin Analogue Lacking an N-
Terminal Tyrosine. Bioorg. Med. Chem. Lett. 1998, 8, 2681−2684.
(27) Sasaki, Y.; Sasaki, A.; Ariizumi, T.; Igari, Y.; Sato, K.; Kohara, H.;
Niizuma, H.; Ambo, A. 2′,6′-Dimethylphenylalanine (Dmp) Can
Mimic the N-Terminal Tyr in Opioid Peptides. Biol. Pharm. Bull.
2004, 27, 244−247.
(28) Joshi, S. N.; Vyas, S. M.; Wu, H.; Duffel, M. W.; Parkin, S.;
Lehmler, H. J. Regioselective Iodination of Chlorinated Aromatic
Compounds Using Silver Salts. Tetrahedron 2011, 67, 7461−7469.
(29) Bender, A. M.; Griggs, N. W.; Anand, J. P.; Traynor, J. R.;
Jutkiewicz, E. M.; Mosberg, H. I. Asymmetric Synthesis and In Vitro
and In Vivo Activity of Tetrahydroquinolines Featuring a Diverse Set
of Polar Substitutions at the 6 Position as Mixed Efficacy μ Opioid
Receptor/δ Opioid Receptor Ligands. ACS Chem. Neurosci. 2015, 6,
1428−1435.
(30) Purington, L. C.; Sobczyk-Kojiro, K.; Pogozheva, I. D.; Traynor,
J. R.; Mosberg, H. I. Development and in Vitro Characterization of a
Novel Bifunctional μ-Agonist/δ-Antagonist Opioid Tetrapeptide. ACS
Chem. Biol. 2011, 6, 1375−1381.
(31) Harrison, C.; Traynor, J. R. The [35S]GTPγS Binding Assay:
Approaches and Applications in Pharmacology. Life Sci. 2003, 74,
489−508.
(13) Cai, C.; Breslin, H. J.; He, W. A Convenient, Large-Scale
Synthesis of 4′-Carboxamido N-Boc-2′,6′-Dimethyl-L-Phenylalanines.
Tetrahedron 2005, 61, 6836−6838.
(14) Sinha, R. K.; Eudes, F. Dimethyl Tyrosine Conjugated Peptide
Prevents Oxidative Damage and Death of Triticale and Wheat
Microspores. Plant Cell, Tissue Organ Cult. 2015, 122, 227−237.
(15) Zhao, K.; Zhao, G. M.; Wu, D.; Soong, Y.; Birk, A. V.; Schiller,
P. W.; Szeto, H. H. Cell-Permeable Peptide Antioxidants Targeted to
Inner Mitochondrial Membrane Inhibit Mitochondrial Swelling,
Oxidative Cell Death, and Reperfusion Injury. J. Biol. Chem. 2004,
279, 34682−34690.
(16) Praquin, C. F. B.; de Koning, P. D.; Peach, P. J.; Howard, R. M.;
Spencer, S. L. Development of an Asymmetric Hydrogenation Route
to (S)-N-Boc-2,6-Dimethyltyrosine. Org. Process Res. Dev. 2011, 15,
1124−1129.
(17) Tang, X.; Soloshonok, V. A.; Hruby, V. J. Convenient,
Asymmetric Synthesis of Enantiomerically Pure 2′,6′- Dimethyltyr-
osine (DMT) via Alkylation of Chiral Equivalent of Nucleophilic
Glycine. Tetrahedron: Asymmetry 2000, 11, 2917−2925.
(18) Balducci, D.; Contaldi, S.; Lazzari, I.; Porzi, G. A Highly
Efficient Stereocontrolled Synthesis of (S)-2′,6′-Dimethyltyrosine
[(S)-DMT]. Tetrahedron: Asymmetry 2009, 20, 1398−1401.
(19) Ross, A. J.; Lang, H. L.; Jackson, R. F. W. Much Improved
Conditions for the Negishi Cross-Coupling of Iodoalanine Derived
Zinc Reagents with Aryl Halides. J. Org. Chem. 2010, 75, 245−248.
(20) Trost, B. M.; Rudd, M. T. Chemoselectivity of the Ruthenium-
Catalyzed Hydrative Diyne Cyclization: Total Synthesis of (+)-Cylin-
dricine C, D, and E. Org. Lett. 2003, 5, 4599−4602.
́ ́
(21) Krascsenicsova, K.; Walla, P.; Kasak, P.; Uray, G.; Kappe, C. O.;
Putala, M. Stereoconservative Negishi Arylation and Alkynylation as an
Efficient Approach to Enantiopure 2,2′-Diarylated 1,1′-Binaphthyls.
Chem. Commun. (Cambridge, U. K.) 2004, 22, 2606−2607.
(22) Walla, P.; Kappe, C. O. Microwave-Assisted Negishi and
Kumada Cross-Coupling Reactions of Aryl Chlorides. Chem. Commun.
(Cambridge, U. K.) 2004, 5, 564−565.
(23) Li, T.; Fujita, Y.; Tsuda, Y.; Miyazaki, A.; Ambo, A.; Sasaki, Y.;
Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H.; Okada, Y. Development of
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX